Quantitative Assessment of Airborne Transmission of Human and Animal Influenza Viruses in the Ferret Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. Animals, Animal Procedures, and Intranasal ID50
2.3. Aerobiology Chamber, Analytical Filters, and Particle Counter
2.4. Determination of Viral Load in Biological Samples in MDCK Cells Using FFU Assay
2.5. Determination of Virus RNA Load in Biological Samples by RT-PCR
2.6. Statistical Analysis
3. Results
3.1. Virus Yield in the URT Cells of Donor Ferrets
3.2. Genomic Characterization of Influenza Virus Strains Used in the Study
3.3. Airborne Infection of Recipient Ferrets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AEC | 3-amino-9-ethylcarbazole |
AID | Airborne Infectious Dose |
AID50 | 50% Airborne Infectious Dose |
cDNA | Complementary Deoxyribonucleic Acid |
DMEM | Dulbecco’s Modified Eagle Medium |
ELC | EuroLabClime |
FFU | Focus-Forming Units |
GISAID | Global Initiative on Sharing All Influenza Data |
HEPES | 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid |
ID50 | 50% Infectious Dose |
IgG | Immunoglobulin G |
IID | Intranasal Infectious Dose |
IID50 | 50% Intranasal Infectious Dose |
MDCK | Madin-Darby Canine Kidney |
NGS | Next-Generation Sequencing |
NS | Nonstructural Protein |
PBS | Phosphate-Buffered Saline |
RNA | RiboNucleic Acid |
RT-PCR | Reverse Transcription, Polymerase Chain Reaction |
TIPRA | Tool for Influenza Pandemic Risk Assessment |
TPCK | Tosyl Phenylalanyl Chloromethyl Ketone |
URT | The Upper Respiratory Tract |
WHO | World Health Organization |
References
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wille, M.; Holmes, E.C. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb. Perspect. Med. 2020, 10, a038489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Zhang, S.-H. Estimating Transmissibility of Seasonal Influenza Virus by Surveillance Data. J. Data Sci. 2011, 9, 55–64. [Google Scholar] [CrossRef]
- Riley, S.; Wu, J.T.; Leung, G.M. Optimizing the Dose of Pre-Pandemic Influenza Vaccines to Reduce the Infection Attack Rate. PLoS Med. 2007, 4, 1032–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payet, C.; Voirin, N.; Vanhems, P.; Ecochard, R. A statistical model to assess the risk of communicable diseases associated with multiple exposures in healthcare settings. BMC Med. Res. Methodol. 2013, 13, 26. [Google Scholar] [CrossRef]
- Haas, C.N.; Rose, J.B.; Gerba, C.P. Quantitative Microbial Risk Assessment, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Haas, C.N.; Rose, J.B.; Gerba, C.P.; Regli, S. Risk Assessment of Virus in Drinking Water. Risk Anal. 1993, 13, 545–552. [Google Scholar] [CrossRef]
- Codeço, C.T. Endemic and epidemic dynamics of cholera: The role of the aquatic Reservoir. BMC Infect. Dis. 2001, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- WHO. Tool for Influenza Pandemic Risk Assessment (TIPRA); WHO: Geneva, Switzerland, 2016; pp. 1–60. [Google Scholar]
- Webster, R.G.; Monto, A.S.; Braciale, T.J.; Lamb, R.A. Textbook of Influenza, 2nd ed.; Wiley-Blackwell: West Sussex, UK, 2015; pp. 175–189. [Google Scholar]
- WHO. Pandemic Influenza Risk Management: A WHO Guide to Inform and Harmonize National and International Pandemic Preparedness and Response; WHO: Geneva, Switzerland, 2017; pp. 1–62. [Google Scholar]
- Skehel, J.J.; Wiley, D.C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef]
- Palese, P.; Compans, R.W. Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): Mechanism of action. J. Gen. Virol. 1976, 33, 159–163. [Google Scholar] [CrossRef]
- Baigent, S.J.; Bethell, R.C.; McCauley, J.W. Genetic analysis reveals that both haemagglutinin and neuraminidase determine the sensitivity of naturally occurring avian influenza viruses to zanamivir in vitro. Virology 1999, 263, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.; Zhang, X.-Q.; Senaati, H.P.; Chen, H.-W.; Varki, N.M.; Schooley, R.T.; Gagneux, P. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol. J. 2013, 10, 321. [Google Scholar] [CrossRef] [Green Version]
- Matrosovich, M.N.; Matrosovich, T.Y.; Gray, T.; Roberts, N.A.; Klenk, H.-D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 2004, 78, 12665–12667. [Google Scholar] [CrossRef] [Green Version]
- Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; Kawaoka, Y. Avian flu: Influenza virus receptors in the human airway. Nature 2006, 440, 435–436. [Google Scholar] [CrossRef]
- Benton, D.J.; Martin, S.R.; Wharton, S.A.; McCauley, J.W. Biophysical Measurement of the Balance of Influenza A Hemagglutinin and Neuraminidase Activities. J. Biol. Chem. 2015, 290, 6516–6521. [Google Scholar] [CrossRef] [Green Version]
- Schulman, J.L.; Kilbourne, E.D. Experimental transmission of influenza virus infection in mice. I. The period of transmissibility. J. Exp. Med. 1963, 118, 257–266. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Lamirande, E.W.; Subbarao, K. The Mouse Model for Influenza. Curr. Protoc. Microbiol. 2009, 15, 15G.3.1–15G.3.30. [Google Scholar] [CrossRef]
- Edenborough, K.M.; Gilbertson, B.P.; Brown, L.E. A Mouse Model for the Study of Contact-Dependent Transmission of Influenza A Virus and the Factors That Govern Transmissibility. J. Virol. 2012, 86, 12544–12551. [Google Scholar] [CrossRef] [Green Version]
- Linster, M.; van Boheemen, S.; de Graaf, M.; Schrauwen, E.J.A.; Lexmond, P.; Mänz, B.; Bestebroer, T.M.; Baumann, J.; van Riel, D.; Rimmelzwaan, G.F.; et al. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 2014, 157, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Yen, H.-L.; Lipatov, A.S.; Ilyushina, N.A.; Govorkova, E.A.; Franks, J.; Yilmaz, N.; Douglas, A.; Hay, A.; Krauss, S.; Rehg, J.E.; et al. Inefficient Transmission of H5N1 Influenza Viruses in a Ferret Contact Model. J. Virol. 2007, 81, 6890–6898. [Google Scholar] [CrossRef] [Green Version]
- Lowen, A.C.; Mubareka, S.; Tumpey, T.M.; García-Sastre, A.; Palese, P. The guinea pig as a transmission model for human influenza viruses. Proc. Natl. Acad. Sci. USA 2006, 103, 9988–9992. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.K.; Lipatov, A.S.; Swayne, D.E. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus. Vet. Pathol. 2009, 46, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Lamirande, E.W.; Subbarao, K. The Ferret Model for Influenza. Curr. Protoc. Microbiol. 2009, 15, 15G.2.1–15G.2.29. [Google Scholar] [CrossRef] [PubMed]
- Herfst, S.; Schrauwen, E.J.; Linster, M.; Chutinimitkul, S.; de Wit, E.; Munster, V.J.; Sorrell, E.M.; Bestebroer, T.M.; Burke, D.F.; Smith, D.J.; et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science 2012, 336, 1534–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Vries, E.; Veldhuis Kroeze, E.J.; Stittelaar, K.J.; Linster, M.; Van der Linden, A.; Schrauwen, E.J.; Leijten, L.M.; van Amerongen, G.; Schutten, M.; Kuiken, T.; et al. Multidrug resistant 2009 A/H1N1 influenza clinical isolate with a neuraminidase I223R mutation retains its virulence and transmissibility in ferrets. PLoS Pathog. 2011, 7, e1002276. [Google Scholar] [CrossRef] [Green Version]
- Hamelin, M.-E.; Baz, M.; Bouhy, X.; Beaulieu, E.; Dube, K.; Mallett, C.; Boivin, G. Reduced airborne transmission of oseltamivir-resistant pandemic A/H1N1 virus in ferrets. Antivir. Ther. 2011, 16, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Wells, W.F. Airborne Contagion and Air Hygiene. An Ecological Study of Droplet Infections; Harvard University Press: Cambridge, MA, USA, 1955. [Google Scholar]
- Killingley, B.; Nguyen-Van-Tam, J. Routes of influenza transmission. Influenza Other Respir. Viruses 2013, 7, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Lee, G.W.; Chen, C.M.; Wu, C.C.; Yu, K.P. The size and concentration of droplets generated by coughing in human subjects. J. Aerosol Med. 2007, 20, 484–494. [Google Scholar] [CrossRef]
- Richard, M.; van den Brand, J.M.A.; Bestebroer, T.M.; Lexmond, P.; de Meulder, D.; Fouchier, R.A.M.; Lowen, A.C.; Herfst, S. Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nat. Commun. 2020, 11, 766. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wei, J.; Choy, K.T.; Sia, S.F.; Rowlands, D.K.; Yu, D.; Wu, C.Y.; Lindsley, W.G.; Cowling, B.J.; McDevitt, J.; et al. Defining the sizes of airborne particles that mediate influenza transmission in ferrets. Proc. Natl. Acad. Sci. USA 2018, 115, 2386–2392. [Google Scholar] [CrossRef] [Green Version]
- Imai, H.; Shinya, K.; Takano, R.; Kiso, M.; Muramoto, Y.; Sakabe, S.; Murakami, S.; Ito, M.; Yamada, S.; Le, M.T.; et al. The HA and NS genes of human H5N1 influenza A virus contribute to high virulence in ferrets. PLoS Pathog. 2010, 6, e1001106. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Pulit-Penaloza, J.A.; Maines, T.R. Ferreting Out Influenza Virus Pathogenicity and Transmissibility: Past and Future Risk Assessments in the Ferret Model. Cold Spring Harb. Perspect. Med. 2020, 10, a038323. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Lau, E.H.Y.; Barclay, W.; Barr, I.G.; Chen, H.; Fouchier, R.A.M.; Hatta, M.; Herfst, S.; Kawaoka, Y.; Lakdawala, S.S.; et al. Robustness of the Ferret Model for Influenza Risk Assessment Studies: A Cross-Laboratory Exercise. mBio 2022, 13, e01174-22. [Google Scholar] [CrossRef]
- Belser, J.A.; Eckert, A.M.; Tumpey, T.M.; Maines, T.R. Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models. Microbiol. Mol. Biol. Rev. 2016, 80, 733–744. [Google Scholar] [CrossRef] [Green Version]
- MacInnes, H.; Zhou, Y.; Gouveia, K.; Cromwell, J.; Lowery, K.; Layton, R.C.; Zubelewicz, M.; Sampath, R.; Hofstadler, S.; Liu, Y.; et al. Transmission of aerosolized seasonal H1N1 influenza A to ferrets. PLoS ONE 2011, 6, e24448. [Google Scholar] [CrossRef] [Green Version]
- Marchenko, V.; Goncharova, N.; Susloparov, I.; Kolosova, N.; Gudymo, A.; Svyatchenko, S.; Danilenko, A.; Durymanov, A.; Gavrilova, E.; Maksyutov, R.; et al. Isolation and characterization of H5Nx highly pathogenic avian influenza viruses of clade 2.3.4.4 in Russia. Virology 2018, 525, 216–223. [Google Scholar] [CrossRef]
- Fabian, P.; McDevitt, J.J.; DeHaan, W.H.; Fung, R.O.; Cowling, B.J.; Chan, K.H.; Leung, G.M.; Milton, D.K. Influenza virus in human exhaled breath: An observational study. PLoS ONE 2008, 3, e2691. [Google Scholar] [CrossRef] [Green Version]
- Koster, F.; Gouveia, K.; Zhou, Y.; Lowery, K.; Russell, R.; MacInnes, H.; Pollock, Z.; Layton, R.C.; Cromwell, J.; Toleno, D.; et al. Exhaled aerosol transmission of pandemic and seasonal H1N1 influenza viruses in the ferret. PLoS ONE 2012, 7, e33118. [Google Scholar] [CrossRef] [Green Version]
- Gustin, K.M.; Belser, J.A.; Wadford, D.A.; Pearce, M.B.; Katz, J.M.; Tumpey, T.M.; Maines, T.R. Influenza virus aerosol exposure and analytical system for ferrets. Proc. Natl. Acad. Sci. USA 2011, 108, 8432–8437. [Google Scholar] [CrossRef] [Green Version]
- Everett, H.E.; Nash, B.; Londt, B.Z.; Kelly, M.D.; Coward, V.; Nunez, A.; van Diemen, P.M.; Brown, I.H.; Brookes, S.M. Interspecies Transmission of Reassortant Swine Influenza A Virus Containing Genes from Swine Influenza A(H1N1)pdm09 and A(H1N2) Viruses. Emerg. Infect. Dis. 2020, 26, 273–281. [Google Scholar] [CrossRef]
- Zitzow, L.A.; Rowe, T.; Morken, T.; Shieh, W.J.; Zaki, S.; Katz, J.M. Pathogenesis of avian influenza A (H5N1) viruses in ferrets. J. Virol. 2002, 76, 4420–4429. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Szretter, K.J.; Katz, J.M.; Tumpey, T.M. Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses. Adv. Virus Res. 2009, 73, 55–97. [Google Scholar] [PubMed]
- Armstrong, T.W.; Haas, C.N. A quantitative microbial risk assessment model for Legionnaires’ disease: Animal model selection and dose-response modeling. Risk Anal. 2007, 27, 1581–1596. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.F.; Weir, M.H.; Eisenberg, M.C.; Meza, R.; Eisenberg, J.N.S. Dose-response relationships for environmentally mediated infectious disease transmission models. PLoS Comput. Biol. 2017, 13, e1005481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peto, S. A Dose-Response Equation for the Invasion of Micro-Organisms. Biometrics 1953, 9, 320–335. [Google Scholar] [CrossRef]
- Kitajima, M.; Huang, Y.; Watanabe, T.; Katayama, H.; Haas, C.N. Dose-response time modeling for highly pathogenic avian influenza A (H5N1) virus infection. Lett. Appl. Microbiol. 2011, 53, 438–444. [Google Scholar]
- Peleg, M. Microbial Dose-Response Curves and Disinfection Efficacy Models Revisited. Food Eng. Rev. 2021, 13, 305–321. [Google Scholar] [CrossRef]
- Peleg, M.; Normand, M.D.; Corradini, M.G. Construction of Food and Water Borne Pathogens’ Dose–Response Curves Using the Expanded Fermi Solution. J. Food Sci. 2011, 76, 82–89. [Google Scholar] [CrossRef]
- Rowe, B.R.; Canosa, A.; Meslem, A.; Rowe, F. Increased airborne transmission of COVID-19 with new variants, Implications for health policies. Build. Environ. 2022, 219, 109132. [Google Scholar] [CrossRef]
- Liu, H.; Golebiewski, L.; Dow, E.C.; Krug, R.M.; Javier, R.T.; Rice, A.P. The ESEV PDZ-binding motif of the avian influenza A virus NS1 protein protects infected cells from apoptosis by directly targeting scribble. J. Virol. 2010, 84, 11164–11174. [Google Scholar] [CrossRef] [Green Version]
- Shepardson, K.; Larson, K.; Cho, H.; Johns, L.L.; Malkoc, Z.; Stanek, K.; Wellhman, J.; Zaiser, S.; Daggs-Olson, J.; Moodie, T.; et al. A Novel Role for PDZ-Binding Motif of Influenza A Virus Nonstructural Protein 1 in Regulation of Host Susceptibility to Postinfluenza Bacterial Superinfections. Viral. Immunol. 2019, 32, 131–143. [Google Scholar] [CrossRef]
- Webster, R.G.; Rott, R. Influenza A virus pathogenicity: The pivotal role of hemagglutinin. Cell 1987, 50, 665–666. [Google Scholar] [CrossRef]
- Horimoto, T.; Kawaoka, Y. The hemagglutinin cleavability of a virulent avian influenza virus by subtilisin-like endoproteases is influenced by the amino acid immediately downstream of the cleavage site. Virology 1995, 210, 466–470. [Google Scholar] [CrossRef] [Green Version]
- Cáceres, C.J.; Rajao, D.S.; Perez, D.R. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses 2021, 13, 1919. [Google Scholar] [CrossRef]
- Claes, F.; Morzaria, S.P.; Donis, R.O. Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses-how is the Asian HPAI H5 lineage maintained. Curr. Opin. Virol. 2016, 16, 158–163. [Google Scholar] [CrossRef]
- Yamaji, R.; Saad, M.D.; Davis, C.T.; Swayne, D.E.; Wang, D.; Wong, F.Y.K.; McCauley, J.W.; Peiris, J.S.M.; Webby, R.J.; Fouchier, R.A.M.; et al. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev. Med. Virol. 2020, 30, e2099. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, B.S.; Russier, M.; Jeevan, T.; Marathe, B.; Govorkova, E.A.; Russell, C.J.; Kim-Torchetti, M.; Choi, Y.K.; Brown, I.; Saito, T.; et al. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals. mSphere 2016, 1, e00003-16. [Google Scholar] [CrossRef] [Green Version]
- Imai, M.; Watanabe, T.; Hatta, M.; Das, S.C.; Ozawa, M.; Shinya, K.; Zhong, G.; Hanson, A.; Katsura, H.; Watanabe, S.; et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 2012, 486, 420–428. [Google Scholar] [CrossRef] [Green Version]
- Pulit-Penaloza, J.A.; Brock, N.; Pappas, C.; Sun, X.; Belser, J.A.; Zeng, H.; Tumpey, T.M.; Maines, T.R. Characterization of highly pathogenic avian influenza H5Nx viruses in the ferret model. Sci. Rep. 2020, 10, 12700. [Google Scholar] [CrossRef]
- Wan, H.; Sorrell, E.M.; Song, H.; Hossain, M.J.; Ramirez-Nieto, G.; Monne, I.; Stevens, J.; Cattoli, G.; Capua, I.; Chen, L.M.; et al. Replication and transmission of H9N2 influenza viruses in ferrets: Evaluation of pandemic potential. PLoS ONE 2008, 3, e2923. [Google Scholar] [CrossRef] [Green Version]
- Peacock, T.P.; Sealy, J.E.; Harvey, W.T.; Benton, D.J.; Reeve, R.; Iqbal, M. Genetic determinants of receptor-binding preference and zoonotic potential of H9N2 avian influenza viruses. J. Virol. 2020, 95, e01651-20. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Sun, H.; Pan, L.; Cui, X.; Zhu, X.; Feng, Y.; Li, M.; Yu, Y.; Wu, M.; et al. Variation and Molecular Basis for Enhancement of Receptor Binding of H9N2 Avian Influenza Viruses in China Isolates. Front. Microbiol. 2020, 11, 602124. [Google Scholar] [CrossRef] [PubMed]
Strain | Experiment Data: Increasing Virus Concentration with Increasing Ferret Infection Dose | HA | NS1 PDZbm Suppresses the Immune Response Prevents Early Apoptosis | NS1 Del 80-84 AA Increases Virulence | Polybasic Cleavage Site in HA, Greatly Increases Pathogenicity | Adaptation to Humans and Mammals (According to Epidemiological Data) | NS1 N200S (N205S) Together with T47A (T48A) in NS2 Are Associated with Decreased Antiviral Response in Mammals |
---|---|---|---|---|---|---|---|
A/chicken/Nghe An/08VTC/2018 (H5N1) | Yes (increase) | 158D | Yes (ESEV) | Yes | Yes | No | NS1 S205N, NS2 A47T Do not reduce antiviral response |
A/chicken/Kostroma/1718/2017 (H5N2) | Yes (increase) | 158N | Yes (ESEV) | No | Yes | No | NS1 N205I, NS2 T47S Do not reduce antiviral response |
A/chicken/Thanh Hoa/V1S5VTC/2020 (H9N2) | No (no change) | 145G | No | No | No | No | NS1 N205S, NS2 T47A, Decreased antiviral response |
A/chicken/Primorsky Krai/1771/2018 (H9N2) | No (significant dependency is not defined) | 145N | No | No | No | No | NS1 N205S, NS2 T47A Decreased antiviral response |
A/swine/Irkutsk/155/2017(H3N2) | No (decrease) | No | No | No | Adaptation to pigs | NS1 205N, NS2 A47T Do not reduce antiviral response | |
A/California/07/2009 (H1N1)pdm09 | Yes (increase) | No | No | No | Strong adaptation to human | NS1 205N, NS2 A47T Do not reduce antiviral response |
Strain | Dose, FFU | Aerosol Particle Concentration Units | Concentration of Aerosol Particles | Concentration of Virus Particles, FFU-Equivalent/L | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3–1.0 µm | 1.0–5.0 µm | >5.0 µm | ||||||||||||
Day after Infection | Day after Infection | Day after Infection | Day after Infection | |||||||||||
2 | 4 | 6 | 2 | 4 | 6 | 2 | 4 | 6 | 2 | 4 | 6 | |||
A/chicken/Thanh Hoa/V1S5VTC/2020 (H9N2) | 10 | Pcs/L | 53,003 ± 13,512 | 38,260 ± 16,211 | 63,787 ± 32,449 | 5237 ± 1454 | 4058 ± 1842 | 6437 ± 3639 | 218 ± 84 | 111 ± 39 | 62 ± 25 | ND* | 0.0120 | 0.0030 |
% | 90.7 ± 23.1 | 90.2 ± 38.2 | 90.8 ± 46.2 | 9 ± 2.5 | 9.6 ± 4.3 | 9.2 ± 5.2 | 0.37 ± 0.14 | 0.26 ± 0.09 | 0.09 ± 0.03 | |||||
106 | Pcs/L | 23,315 ± 8139 | 20,598 ± 10,231 | 16,396 ± 9955 | 2172 ± 834 | 1711 ± 903 | 1306 ± 900 | 64 ± 31 | 27 ± 12 | 26 ± 12 | 0.0009 | 0.0011 | 0.0010 | |
% | 91.2 ± 31.9 | 92.2 ± 45.8 | 92.5 ± 56.1 | 8.5 ± 3.3 | 7.7 ± 4 | 7.4 ± 5.1 | 0.25 ± 0.12 | 0.12 ± 0.05 | 0.15 ± 0.07 | |||||
Unchallenged ferrets (control) | 0 | Pcs/L | 33,761 ± 5137 | 3288 ± 580 | 644 ± 210 | ND* | ND* | ND* | ||||||
% | 89.6 ± 13.6 | 8.7 ± 1.5 | 1.7 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudymo, A.; Onkhonova, G.; Danilenko, A.; Susloparov, I.; Danilchenko, N.; Kosenko, M.; Moiseeva, A.; Kolosova, N.; Svyatchenko, S.; Marchenko, V.; et al. Quantitative Assessment of Airborne Transmission of Human and Animal Influenza Viruses in the Ferret Model. Atmosphere 2023, 14, 471. https://doi.org/10.3390/atmos14030471
Gudymo A, Onkhonova G, Danilenko A, Susloparov I, Danilchenko N, Kosenko M, Moiseeva A, Kolosova N, Svyatchenko S, Marchenko V, et al. Quantitative Assessment of Airborne Transmission of Human and Animal Influenza Viruses in the Ferret Model. Atmosphere. 2023; 14(3):471. https://doi.org/10.3390/atmos14030471
Chicago/Turabian StyleGudymo, Andrey, Galina Onkhonova, Alexey Danilenko, Ivan Susloparov, Natalia Danilchenko, Maxim Kosenko, Anastasia Moiseeva, Natalia Kolosova, Svetlana Svyatchenko, Vasily Marchenko, and et al. 2023. "Quantitative Assessment of Airborne Transmission of Human and Animal Influenza Viruses in the Ferret Model" Atmosphere 14, no. 3: 471. https://doi.org/10.3390/atmos14030471
APA StyleGudymo, A., Onkhonova, G., Danilenko, A., Susloparov, I., Danilchenko, N., Kosenko, M., Moiseeva, A., Kolosova, N., Svyatchenko, S., Marchenko, V., Nhai, T. T., Kuznetsov, A., Gavrilova, E., Maksyutov, R., & Ryzhikov, A. (2023). Quantitative Assessment of Airborne Transmission of Human and Animal Influenza Viruses in the Ferret Model. Atmosphere, 14(3), 471. https://doi.org/10.3390/atmos14030471