An Empirical Model of Gross Primary Productivity (GPP) and Relations between GPP and Its Driving Factors, Biogenic Volatile Organic Compounds in a Subtropical Conifer Plantation in China
Abstract
:1. Introduction
2. Instrumentation and Methods
2.1. Site Description
2.2. Instruments and Measurements
2.3. Flux Data Processing and Data Selection
2.4. Empirical Model of Gross Primary Production (EMGPP)
3. Results
3.1. Model Development and Evaluation for the Subtropical Coniferous Forest
3.1.1. EMGPP Models Using 3-Factor and 2-Factor for S/Q < 0.5 Conditions
3.1.2. EMGPP Models Using 3-Factor and 2-Factor for S/Q ≥ 0.5 Conditions
3.2. Evaluation of the EMGPP Models under All Sky Conditions
3.2.1. Evaluation of EMGPP Models for S/Q < 0.5 Conditions
3.2.2. Evaluation of the EMGPP Model for S/Q ≥ 0.5
3.3. GPP Simulations and Measurements under All Sky Conditions during 2013–2016
3.4. Sensitivity Analysis of GPP
4. Discussion
4.1. EMGPP/CO2, PAR and Related Mechanisms
4.2. Performance of EMGPP
4.3. GPP and Its Driving Factors under Different Sky Conditions
4.4. The Relationship between BVOCs and NEE
4.5. Interactions between GLPs (CO2, BVOCs), Solar Radiation and Climate Change and Their Potential Effects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; King, J.C.; Mulvaney, R. Climate Change: Devil in the Detail. Science 2001, 293, 1777–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, D.G.; Marshall, G.J.; Connolley, W.M.; Parkinson, C.; Mulvaney, R.; Hodgson, D.A.; King, J.C.; Pudsey, C.J.; Turner, J. Recent Rapid Regional Climate Warming on the Antarctic Peninsula. Clim. Chang. 2003, 60, 243–274. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health 2022, 19, 8906. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.H.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) IPCC 2013: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Stips, A.; Macias, D.; Coughlan, C.; Garcia-Gorriz, E.; Liang, X.S. On the causal structure between CO2 and global temperature. Sci. Rep. 2016, 6, 21691. [Google Scholar] [CrossRef] [Green Version]
- Gurney, K.R.; Law, R.M.; Denning, A.S.; Rayner, P.J.; Baker, D.; Bousquet, P.; Bruhwiler, L.; Chen, Y.-H.; Ciais, P.; Fan, S.; et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 2002, 415, 626–630. [Google Scholar] [CrossRef] [Green Version]
- Wofsy, S.C.; Goulden, M.L.; Munger, J.W.; Fan, S.M.; Bakwin, P.S.; Daube, B.C.; Bassow, S.L.; Bazzaz, F.A. Net exchange of CO2 in a midlatitude forest. Science 1993, 260, 1314–1317. [Google Scholar] [CrossRef] [Green Version]
- Zeng, N.; Mariotti, A.; Wetzel, P. Terrestrial mechanisms of interannual CO2 variability. Glob. Biogeochem. Cycles 2005, 19, Gb1016. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Cox, P.; Betts, R.A.; Bopp, L.; Von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.C.; Eby, M.; Fung, I.; et al. Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. J. Clim. 2006, 19, 3337–3353. [Google Scholar] [CrossRef] [Green Version]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Yuan, W.; Cai, W.; Xia, J.; Chen, J.; Liu, S.; Dong, W.; Merbold, L.; Law, B.; Arain, A.; Beringer, J.; et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 2014, 192–193, 108–120. [Google Scholar] [CrossRef]
- Chen, J.M.; Ju, W.; Ciais, P.; Viovy, N.; Liu, R.; Liu, Y.; Lu, X. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 2019, 10, 4259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S.D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S.C.; Graven, H.; Heinze, C.; Huntingford, C.; et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 2015, 12, 653–679. [Google Scholar] [CrossRef] [Green Version]
- Krinner, G.; Viovy, N.; de Noblet-Ducoudré, N.; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19, GB1015. [Google Scholar] [CrossRef]
- O’sullivan, M.; Friedlingstein, P.; Sitch, S.; Anthoni, P.; Arneth, A.; Arora, V.K.; Bastrikov, V.; Delire, C.; Goll, D.S.; Jain, A.; et al. Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat. Commun. 2022, 13, 4781. [Google Scholar] [CrossRef]
- Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational constraints on the global atmospheric CO2 budget. Science 1990, 247, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Denning, A.S.; Randall, D.A.; Collatz, G.J.; Sellers, P.J. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Tellus B 1996, 48, 543–567. [Google Scholar] [CrossRef] [Green Version]
- Nagy, L.; Artaxo, P.; Forsberg, B.R. Interactions between Biosphere, Atmosphere, and Human Land Use in the Amazon Basin: An Introduction; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 3–15. [Google Scholar]
- Granier, A.; Biron, P.; Lemoine, D. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol. 2000, 100, 291–308. [Google Scholar] [CrossRef]
- Schmid, H.P.; Grimmond, C.S.; Cropley, F.; Offerle, B.; Su, H.B. Measurenments of CO2 and energy fluxes over a mixed hardwood forest in the mid-n United States. Agric. For. Meteorol. 2000, 103, 357–374. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Loescher, H.W.; Law, B.; Mahrt, L.; Hollinger, D.Y.; Campbell, J.; Wofsy, S.C. Uncertainties in, and interpretation of, carbon flux estimates using the eddy covariance technique. J. Geophys. Res. Atmos. 2006, 111, D21S90. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Yang, M.; Bakker, D.C.E.; Kitidis, V.; Bell, T.G. Uncertainties in eddy covariance air–sea CO2 flux measurements and implications for gas transfer velocity parameterisations. Atmos. Chem. Phys. 2021, 21, 8089–8110. [Google Scholar] [CrossRef]
- Bai, J.; Duhl, T. A primary generalized empirical model of BVOC emissions for some typical forests in China. Atmos. Pollut. Res. 2021, 12, 101126. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Wang, K.; Li, X.; Bastos, A.; Canadell, J.G.; Ciais, P.; Friedlingstein, P.; Sitch, S. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 2020, 26, 300–318. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; He, Y.; Wang, X.; Chen, F. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 2022, 65, 641–651. [Google Scholar] [CrossRef]
- Wang, K.; Piao, S.; He, Y.; Liu, Y.; He, H. Spatial variations and mechanisms for the stability of terrestrial carbon sink in China. Sci. China Earth Sci. 2022, 66, 227–236. [Google Scholar] [CrossRef]
- Guenther, A. The contribution of reactive carbon emissions from vegetation to the carbon balance of terrestrial ecosystems. Chemosphere 2002, 49, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.P.; Guenther, A.; Harley, P.; Otter, L.; Veenendaal, E.M.; Hewitt, C.N.; James, A.E.; Owen, S.M. Eddy flux and leaf-level measurements of biogenic VOC emissions from mopane woodland of Botswana. J. Geophys. Res. Atmos. 2003, 108, 8466. [Google Scholar] [CrossRef]
- Duhl, T.R.; Helmig, D.; Guenther, A. Sesquiterpene emissions from vegetation: A review. Biogeosciences 2008, 5, 761–777. [Google Scholar] [CrossRef] [Green Version]
- Bouvier-Brown, N.C.; Schade, G.W.; Misson, L.; Lee, A.; McKay, M.; Goldstein, A.H. Contributions of biogenic volatile organic compounds to net ecosystem carbon flux in a ponderosa pine plantation. Atmos. Environ. 2012, 60, 527–533. [Google Scholar] [CrossRef]
- Bai, J.; Guenther, A.; Turnipseed, A.; Duhl, T.; Greenberg, J. Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China. Atmos. Environ. 2017, 161, 176–190. [Google Scholar] [CrossRef]
- Guenther, A.; Baugh, B.; Brasseur, G.; Greenberg, J.; Harley, P.; Klinger, L.; Serça, D.; Vierling, L. Isoprene emission estimates and uncertainties for the central African EXPRESSO study domain. J. Geophys. Res. Atmos. 1999, 104, 30625–30639. [Google Scholar] [CrossRef] [Green Version]
- Kesselmeier, J.; Ciccioli, P.; Kuhn, U.; Stefani, P.; Biesenthal, T.; Rottenberger, S.; Wolf, A.; Vitullo, M.; Valentini, R.; Nobre, A.; et al. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget. Glob. Biogeochem. Cycles 2002, 16, 73–81. [Google Scholar] [CrossRef]
- Claeys, M.; Graham, B.; Vas, G.; Wang, W.; Vermeylen, R.; Pashynska, V.; Cafmeyer, J.; Guyon, P.; Andreae, M.O.; Artaxo, P.; et al. Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. Science 2004, 303, 1173–1176. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.P.; Hader, J.D.; Mcmeeking, G.R.; Petters, M.D. High Relative Humidity as a Trigger for Widespread Release of Ice Nuclei. Aerosol Sci. Technol. 2014, 48, i–v. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.H. UV extinction in the atmosphere and its spatial variation in North China. Atmos. Environ. 2017, 154, 318–330. [Google Scholar] [CrossRef]
- Houweling, S.; Dentener, F.; Lelieveld, J. The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. Atmos. 1998, 103, 10673–10696. [Google Scholar] [CrossRef]
- Poisson, N.; Kanakidou, M.; Crutzen, P.J. Impact of Non-Methane Hydrocarbons on Tropospheric Chemistry and the Oxidizing Power of the Global Troposphere: 3-Dimensional Modelling Results. J. Atmos. Chem. 2000, 36, 157–230. [Google Scholar] [CrossRef]
- Collins, W.; Derwent, R.; Johnson, C.E.; Stevenson, D. The Oxidation of Organic Compounds in the Troposphere and their Global Warming Potentials. Clim. Chang. 2002, 52, 453–479. [Google Scholar] [CrossRef]
- Pacifico, F.; Harrison, S.; Jones, C.; Sitch, S. Isoprene emissions and climate. Atmos. Environ. 2009, 43, 6121–6135. [Google Scholar] [CrossRef]
- Guenther, A.B.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. J. Geophys. Res. Atmos. 1991, 96, 10799–10808. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Niinemets, U.; Tenhunen, J.D.; Harley, P.C.; Steinbrecher, R. A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ. 1999, 22, 1319–1335. [Google Scholar] [CrossRef]
- Martin, M.; Stirling, C.; Humphries, S.; Long, S. A process-based model to predict the effects of climatic change on leaf isoprene emission rates. Ecol. Model. 2000, 131, 161–174. [Google Scholar] [CrossRef]
- Zimmer, W.; Steinbrecher, R.; Korner, C.; Schnitzler, J.-P. The process-based SIM-BIM model: Towards more realistic prediction of isoprene emissions from adult Quercus petrea forest trees. Atmos. Environ. 2003, 37, 1665–1671. [Google Scholar] [CrossRef]
- Pacifico, F.; Harrison, S.P.; Jones, C.D.; Arneth, A.; Sitch, S.; Weedon, G.P.; Barkley, M.P.; Palmer, P.I.; Serça, D.; Potosnak, M.; et al. Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions. Atmos. Chem. Phys. 2011, 11, 4371–4389. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Prince, S.D.; Li, K.; Tao, B.; Small, J.; Shao, X. Response of terrestrial carbon uptake to climate interannual variability in China. Glob. Chang. Biol. 2003, 9, 536–546. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Ser. D Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.R.; Wen, X.F.; Li, Q.K.; Zhang, L.M.; Ren, C.Y.; Liu, Y.F.; Guan, D.X. Seasonal patterns and environmental control of ecosystem respiration in subtropical and temperate forests in China. Sci. China Ser. D Earth Sci. 2005, 48 (Suppl. I), 93–105. [Google Scholar]
- Liu, Y.F.; Song, X.; Yu, G.R.; Sun, S.M.; Wen, X.F.; Chen, Y.R. Seasonal variation of CO2 flux and its environmental factors in evergreen coniferous plantation. Sci. China Ser. D Earth Sci. 2005, 48 (Suppl. I), 123–132. [Google Scholar]
- Bai, J. Observations and estimations of PAR and solar visible radiation in North China. J. Atmos. Chem. 2012, 69, 231–252. [Google Scholar] [CrossRef]
- Liu, M.; He, H.L.; Yu, G.Y.; Sun, X.M.; Zhu, X.D.; Zhang, L.; Zhao, X.Q.; Wang, H.M.; Shi, P.L.; Han, S.J. Impacts of uncertainty in data processing on estimation of CO2 flux components. Chin. J. Appl. Ecol. 2010, 21, 2389–2396. [Google Scholar]
- Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 2008, 56, 1–26. [Google Scholar] [CrossRef]
- Yu, G.R.; Wen, X.F.; Sun, X.M.; Tanner, B.D.; Lee, X.; Chen, J.Y. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, U.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 1999, 30, 113–175. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water-vapor transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Michaelis, L.; Menten, M.L. Die kinetik der invertinwirkung. Biochem. Z. 1913, 49, 333–369. [Google Scholar]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 2001, 107, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Bai, J. Estimation of the isoprene emission from the Inner Mongolia grassland. Atmos. Pollut. Res. 2015, 6, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Loreto, F.; Schnitzler, J.-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Bai, J.; Duhl, T.; Hao, N. Biogenic volatile compound emissions from a temperate forest, China: Model simulation. J. Atmos. Chem. 2015, 73, 29–59. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, G.; Wen, X.; Wang, Y.; Song, X.; Li, J.; Sun, X.; Yang, F.; Chen, Y.; Liu, Q. Seasonal dynamics of CO2 fluxes from subtropical plantation coniferous ecosystem. Sci. China Ser. D Earth Sci. 2006, 49, 99–109. [Google Scholar] [CrossRef]
- Xu, M.; Wang, H.; Wen, X.; Zhang, T.; Di, Y.; Wang, Y.; Wang, J.; Cheng, C.; Zhang, W. The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation. Sci. Rep. 2017, 7, 10025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tang, Y.; Xu, M.; Zhao, G.; Chen, N.; Zheng, Z.; Zhu, J.; Ji, X.; Wang, D.; Zhang, Y.; et al. Joint control of alpine meadow productivity by plant phenology and photosynthetic capacity. Agric. For. Meteorol. 2022, 325, 109135. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Air Quality Model Performance Evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, T.; Shao, C. Afforestation increases ecosystem productivity and carbon storage in China during the 2000s. Agric. For. Meteorol. 2020, 296, 108227. [Google Scholar] [CrossRef]
- Ma, Y.; Yue, X.; Zhou, H.; Gong, C.; Lei, Y.; Tian, C.; Cao, Y. Identifying the dominant climate-driven uncertainties in modeling gross primary productivity. Sci. Total Environ. 2021, 800, 149518. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Sun, Y.C.; Ma, Y.X.; Cao, K.F.; Shen, J.X.; Zhang, Y.P.; Mei, C.C.; Liu, W.J. Simulation of carbon budget in rubber plantations in Xishuangbanna based on the Biome-BGC model. Acta Ecol. Sin. 2017, 37, 5732–5741. [Google Scholar]
- Yang, M.X.; Dai, Z.Y.; Du, Q.Y.; Qiang, M. Comparison of different GPP models in subtropical evergreen forest sites. J. Geomat. 2019, 44, 69–73. [Google Scholar]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. Atmos. 2002, 107, ACL 2-1–ACL 2-23. [Google Scholar] [CrossRef] [Green Version]
- Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009, 458, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- He, X.Z.; Zhou, T.; Jia, G.S.; Zhang, Z.Y.; Li, X.J.; Zhou, C.; Feng, S.H. Model effects of Changes in the amount and diffuse fraction of PAR on forest GPP. J. Nat. Resour. 2011, 26, 619–634. [Google Scholar]
- Wang, X.; Wu, J.; Chen, M.; Xu, X.; Wang, Z.; Wang, B.; Wang, C.; Piao, S.; Lin, W.; Miao, G.; et al. Field evidences for the positive effects of aerosols on tree growth. Glob. Chang. Biol. 2018, 24, 4983–4992. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Unger, N. Fire air pollution reduces global terrestrial productivity. Nat. Commun. 2018, 9, 5413. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wu, X.; Ju, W.; Zhang, L.; Chen, Z.; He, W.; Liu, Y.; Shen, Y. Modeling the Effects of Global and Diffuse Radiation on Terrestrial Gross Primary Productivity in China Based on a Two-Leaf Light Use Efficiency Model. Remote Sens. 2020, 12, 3355. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Lei, Y.; Zhang, T.; Tian, C.; Ma, Y.; Cao, Y. Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmos. Environ. 2020, 244, 117905. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Beringer, J.; Hutley, L. Exploring the link between clouds, radiation, and canopy productivity of tropical savannas. Agric. For. Meteorol. 2013, 182–183, 304–313. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, W.; Yang, J.; Ren, H.; Zakeri, B.; Tong, D.; Guo, Y.; Klimont, Z.; Zhu, T.; Tang, X.; et al. Importing or self-dependent: Energy transition in Beijing towards carbon neutrality and the air pollution reduction co-benefits. Clim. Chang. 2022, 173, 18. [Google Scholar] [CrossRef]
- Li, S.P.; Matthews, J.; Sinha, A. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. Science 2008, 319, 1657–1660. [Google Scholar] [CrossRef]
- Bai, J. O3 Concentration and Its Relation with BVOC Emissions in a Subtropical Plantation. Atmosphere 2021, 12, 711. [Google Scholar] [CrossRef]
- Anav, A.; Menut, L.; Khvorostyanov, D.; Viovy, N. Impact of tropospheric ozone on the Euro-Mediterranean vegetation. Glob. Chang. Biol. 2011, 17, 2342–2359. [Google Scholar] [CrossRef]
- Agyei, T.; Juráň, S.; Edwards-Jonášová, M.; Fischer, M.; Švik, M.; Komínková, K.; Ofori-Amanfo, K.K.; Marek, M.V.; Grace, J.; Urban, O. The Influence of Ozone on Net Ecosystem Production of a Ryegrass–Clover Mixture under Field Conditions. Atmosphere 2021, 12, 1629. [Google Scholar] [CrossRef]
- Bai, J.; Zong, X. Global Solar Radiation Transfer and Its Loss in the Atmosphere. Appl. Sci. 2021, 11, 2651. [Google Scholar] [CrossRef]
- Jiang, C.; Ryu, Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sens. Environ. 2016, 186, 528–547. [Google Scholar] [CrossRef]
- Han, Q.; Li, C.; Zhao, C.; Zhang, Y.; Li, S. Grazing decreased water use efficiency in Central Asia from 1979 to 2011. Ecol. Model. 2018, 388, 72–79. [Google Scholar] [CrossRef]
- Li, C.; Han, Q.; Xu, W. Contribution of Climate Change and Grazing on Carbon Dynamics in Central Asian Pasturelands. Remote Sens. 2022, 14, 1210. [Google Scholar] [CrossRef]
- Lowe, P.R. An approximating polynomial for computation of saturation vapor pressure. J. Appl. Meteorol. 1977, 16, 100–103. [Google Scholar] [CrossRef]
- Ofori-Amanfo, K.K.; Klem, K.; Veselá, B.; Holub, P.; Agyei, T.; Juráň, S.; Grace, J.; Marek, M.V.; Urban, O. The effect of elevated CO2 on photosynthesis is modulated by nitrogen supply and reduced water availability in Picea abies. Tree Physiol. 2023, 43, tpad024. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.V.; Su, H.B.; Vogel, C.S.; Schmid, H.P.; Curtis, P.S. Photosynthetic and water use efficiency responses to diffuse radiation by an aspen-dominated northern hardwood forest. For. Sci. 2004, 50, 793–801. [Google Scholar]
- Cirino, G.G.; Souza, R.A.F.; Adams, D.K.; Artaxo, P. The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmos. Chem. Phys. 2014, 14, 6523–6543. [Google Scholar] [CrossRef] [Green Version]
- Portillo-Estrada, M.; Zenone, T.; Arriga, N.; Ceulemans, R. Contribution of volatile organic compound fluxes to the ecosystem carbon budget of a poplar short-rotation plantation. Glob. Chang. Biol. Bioenergy 2018, 10, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Griffin, R.J.; Cocker, D.R., III; Flagan, R.C.; Seinfeld, J.H. Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 1999, 104, 3555–3567. [Google Scholar] [CrossRef] [Green Version]
- Kroll, J.H.; Ng, N.L.; Murphy, S.M.; Flagan, R.C.; Seinfeld, J.H. Secondary organic aerosol formation from isoprene photooxidation under high-NOxconditions. Geophys. Res. Lett. 2005, 32, L18808. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Valolahti, H.; Kivimäenpää, M.; Michelsen, A.; Rinnan, R. Acclimation of Biogenic Volatile Organic Compound Emission From Subarctic Heath Under Long-Term Moderate Warming. J. Geophys. Res. Biogeosci. 2018, 123, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z. Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J. Geophys. Res. Atmos. 1999, 104, 3527–3542. [Google Scholar] [CrossRef]
- Kulmala, M.; Nieminen, T.; Nikandrova, A.; Lehtipalo, K.; Manninen, H.E.; Kajos, M.K.; Kolari, P.; Lauri, A.; Petäjä, T.; Krejci, R.; et al. CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environ. Res. 2014, 19 (Suppl. B), 122–131. [Google Scholar]
- Harley, P.C. The Roles of Stomatal Conductance and Compound Volatility in Controlling the Emission of Volatile Organic Compounds from Leaves. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions; Niinemets, Ü., Monson, R.K., Eds.; Tree Physiology, 5; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2013; pp. 181–208. [Google Scholar]
- Horowitz, A.; Meller, R.; Moortgat, G.K. The UV–VIS absorption cross sections of the α-dicarbonyl compounds pyruvic acid, biacetyl and glyoxal. J. Photochem. Photobiol. A Chem. 2001, 146, 19–27. [Google Scholar] [CrossRef]
- Zavalishin, N.N. Reasons for Modern Warming: Hypotheses and Facts. J. Atmos. Sci. Res. 2021, 5, 11–17. [Google Scholar] [CrossRef]
Model | B1 | B2 | B3 | B0 | R2 | δavg | δmax | NMSE | σcal | σobs | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg CO2 m−2 s−1) | (%) | (mg CO2 m−2 s−1) | (%) | |||||||||||
3 factor | 0.029 | 0.992 | −0.087 | 0.085 | 0.999 | 9.96 | 44.04 | 0.013 | 0.14 | 0.13 | 0.06 | 9.46 | 0.07 | 11.33 |
Model | C1 | C2 | C0 | R2 | δavg | δmax | NMSE | σcal | σobs | MAD | RMSE | |||
(mg CO2 m−2 s−1) | (%) | (mg CO2 m−2 s−1) | (%) | |||||||||||
2 factor | 0.027 | 1.014 | 0.025 | 0.999 | 10.25 | 29.49 | 0.016 | 0.14 | 0.13 | 0.06 | 10.12 | 0.08 | 12.55 |
Model | B1 | B2 | B3 | B0 | R2 | δavg | δmax | NMSE | σcal | σobs | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg CO2 m−2 s−1) | (%) | (mg CO2 m−2 s−1) | (%) | |||||||||||
3 factor | 0.012 | 1.128 | −0.092 | 0.072 | 0.994 | 15.52 | 47.91 | 0.035 | 0.228 | 0.226 | 0.12 | 15.21 | 0.15 | 18.74 |
Model | C1 | C2 | C0 | R2 | δavg | δmax | NMSE | σcal | σobs | MAD | RMSE | |||
(mg CO2 m−2 s−1) | (%) | (mg CO2 m−2 s−1) | (%) | |||||||||||
2 factor | 0.005 | 1.171 | 0.027 | 0.993 | 16.20 | 67.15 | 0.037 | 0.235 | 0.226 | 0.13 | 15.66 | 0.16 | 19.35 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mgCO2 m−2 s−1) | (%) | (mgCO2 m−2 s−1) | (%) | ||||||
2013–2014 | 83.34 | 0.365 | 0.382 | 0.247 | 1.01 | 873 | 0.259 | 42.27 | 0.510 | 83.08 |
2015 | 62.61 | 0.283 | 0.334 | 0.258 | 1.03 | 445 | 0.265 | 41.60 | 0.515 | 80.90 |
2016 | 90.21 | 0.460 | 0.389 | 0.301 | 1.07 | 322 | 0.335 | 53.29 | 0.580 | 92.23 |
2013–2016 | 78.41 | 0.357 | 0.369 | 0.260 | 1.03 | 1665 | 0.274 | 44.08 | 0.378 | 60.69 |
Time Period | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
(mg CO2 m−2 s−1) | (%) | (mg CO2 m−2 s−1) | (%) | |||||||
2013–2014 | 76.46 | 0.333 | 0.369 | 0.247 | 1.04 | 873 | 0.252 | 41.03 | 0.502 | 81.84 |
2015 | 62.44 | 0.272 | 0.329 | 0.258 | 1.04 | 445 | 0.265 | 41.59 | 0.515 | 80.89 |
2016 | 97.44 | 0.508 | 0.420 | 0.301 | 1.11 | 322 | 0.361 | 57.43 | 0.602 | 95.74 |
2013–2016 | 76.19 | 0.349 | 0.368 | 0.260 | 1.05 | 1665 | 0.276 | 44.27 | 0.378 | 60.65 |
3-F Time Period | δavg | δmax | GPPcal | GPPobs | cal/obs | 2-F Time Period | δavg | δmax | GPPcal | GPPobs | cal/obs |
---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 51.08 | 137.92 | 40.74 | 36.32 | 0.84 | 2013 | 37.88 | 105.36 | 41.21 | 36.32 | 0.97 |
2014 | 33.62 | 87.80 | 21.23 | 23.43 | 0.77 | 2014 | 30.09 | 86.06 | 22.14 | 23.43 | 0.83 |
2015 | 26.82 | 56.51 | 29.15 | 28.35 | 0.95 | 2015 | 22.28 | 54.46 | 29.48 | 28.35 | 0.99 |
2016 | 36.10 | 139.35 | 19.72 | 18.40 | 1.16 | 2016 | 43.52 | 139.93 | 20.36 | 18.40 | 1.24 |
2013–2014 | 40.05 | 137.92 | 28.42 | 28.18 | 0.80 | 2013–2014 | 32.96 | 105.36 | 29.16 | 28.18 | 0.88 |
2013–2016 | 35.66 | 139.35 | 26.21 | 25.53 | 0.93 | 2013–2016 | 33.19 | 139.93 | 26.82 | 25.53 | 1.01 |
3-F Time Period | δavg | GPPcal | GPPobs | cal/obs | 2-F Time Period | δavg | GPPcal | GPPobs | cal/obs |
---|---|---|---|---|---|---|---|---|---|
2013 | 12.17 | 285.17 | 254.23 | 1.12 | 2013 | 13.46 | 288.45 | 254.23 | 1.13 |
2014 | 9.38 | 254.74 | 281.11 | 0.91 | 2014 | 5.50 | 265.66 | 281.11 | 0.95 |
2015 | 2.83 | 291.47 | 283.46 | 1.03 | 2015 | 4.00 | 294.79 | 283.46 | 1.04 |
2016 | 7.20 | 216.94 | 202.36 | 1.07 | 2016 | 10.68 | 223.98 | 202.36 | 1.11 |
2013–2014 | 0.85 | 539.91 | 535.34 | 1.01 | 2013–2014 | 3.51 | 554.11 | 535.34 | 1.04 |
2013–2016 | 2.66 | 1048.32 | 1021.16 | 1.03 | 2013–2016 | 5.06 | 1072.87 | 1021.16 | 1.05 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mg CO2 m−2 s−1) | (%) | (mg CO2 m−2 s−1) | (%) | ||||||
2013–2014 | 143.80 | 0.582 | 0.388 | 0.293 | 1.42 | 5759 | 0.295 | 70.83 | 0.543 | 130.46 |
2015 | 156.93 | 0.653 | 0.387 | 0.287 | 1.54 | 3617 | 0.332 | 79.89 | 0.576 | 138.75 |
2016 | 156.01 | 0.626 | 0.368 | 0.312 | 1.28 | 3552 | 0.349 | 73.65 | 0.591 | 124.73 |
2013–2016 | 150.73 | 0.611 | 0.382 | 0.298 | 1.41 | 13031 | 0.320 | 73.93 | 0.402 | 92.83 |
Time | δavg | NMSE | σcal | σobs | cal/obs | n | MAD | RMSE | ||
---|---|---|---|---|---|---|---|---|---|---|
Period | (mg CO2 m−2 s−1) | (%) | (mg CO2 m−2 s−1) | (%) | ||||||
2013–2014 | 137.05 | 0.522 | 0.368 | 0.293 | 1.39 | 5759 | 0.282 | 67.83 | 0.531 | 127.66 |
2015 | 148.56 | 0.557 | 0.366 | 0.287 | 1.50 | 3617 | 0.306 | 73.83 | 0.554 | 133.34 |
2016 | 146.65 | 0.576 | 0.353 | 0.312 | 1.26 | 3552 | 0.328 | 69.25 | 0.573 | 120.95 |
2013–2016 | 143.08 | 0.545 | 0.364 | 0.298 | 1.38 | 13,031 | 0.302 | 69.71 | 0.375 | 86.71 |
3-F Time Period | δavg | δmax | GPPcal | GPPobs | cal/obs | 2-F Time Period | δavg | δmax | GPPcal | GPPobs | cal/obs |
---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 43.62 | 77.66 | 169.86 | 134.17 | 1.19 | 2013 | 42.62 | 74.40 | 169.71 | 134.17 | 1.19 |
2014 | 51.87 | 92.51 | 183.79 | 121.52 | 1.37 | 2014 | 50.90 | 90.06 | 178.56 | 121.52 | 1.31 |
2015 | 50.20 | 95.21 | 193.13 | 125.12 | 1.45 | 2015 | 48.70 | 89.28 | 187.62 | 125.12 | 1.39 |
2016 | 36.99 | 65.80 | 179.30 | 140.17 | 1.20 | 2016 | 39.15 | 70.01 | 175.86 | 140.17 | 1.16 |
2013–2014 | 48.83 | 92.51 | 178.66 | 126.18 | 1.30 | 2013–2014 | 47.85 | 90.06 | 175.30 | 126.18 | 1.26 |
2013–2016 | 45.91 | 95.21 | 182.87 | 129.79 | 1.32 | 2013–2016 | 45.66 | 90.06 | 178.89 | 129.79 | 1.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Yang, F.; Wang, H.; Xu, M. An Empirical Model of Gross Primary Productivity (GPP) and Relations between GPP and Its Driving Factors, Biogenic Volatile Organic Compounds in a Subtropical Conifer Plantation in China. Atmosphere 2023, 14, 1046. https://doi.org/10.3390/atmos14061046
Bai J, Yang F, Wang H, Xu M. An Empirical Model of Gross Primary Productivity (GPP) and Relations between GPP and Its Driving Factors, Biogenic Volatile Organic Compounds in a Subtropical Conifer Plantation in China. Atmosphere. 2023; 14(6):1046. https://doi.org/10.3390/atmos14061046
Chicago/Turabian StyleBai, Jianhui, Fengting Yang, Huimin Wang, and Mingjie Xu. 2023. "An Empirical Model of Gross Primary Productivity (GPP) and Relations between GPP and Its Driving Factors, Biogenic Volatile Organic Compounds in a Subtropical Conifer Plantation in China" Atmosphere 14, no. 6: 1046. https://doi.org/10.3390/atmos14061046
APA StyleBai, J., Yang, F., Wang, H., & Xu, M. (2023). An Empirical Model of Gross Primary Productivity (GPP) and Relations between GPP and Its Driving Factors, Biogenic Volatile Organic Compounds in a Subtropical Conifer Plantation in China. Atmosphere, 14(6), 1046. https://doi.org/10.3390/atmos14061046