Influence of Acetylene Concentration on N2O and N2 Emissions from an Intensive Vegetable Soil under Anoxic and Oxic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Anoxic and Oxic Incubations and Gas Monitoring
2.3. Analysis of Soil Physical and Chemical Properties
2.4. Statistical Analysis
3. Results
3.1. Cumulative N2O Production
3.2. Cumulative N2 Production
3.3. Nitrogenous Gas Production
3.4. N2O and N2 Production Rates and N2O/(N2O + N2) Product Ratio
3.5. Cumulative CO2 Production
3.6. Nitrite and Ammonium Concentration
4. Discussion
4.1. Effect of Acetylene Inhibitor on Soil N2O and N2 Production
4.2. Effect of Acetylene Inhibitor on Actual Soil Denitrification and Gaseous Product Ratio
4.3. Effect of Acetylene Inhibitor on Soil Inorganic Nitrogen
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Fan, Z.B.; Lin, S.; Zhang, X.M.; Jiang, Z.M.; Yang, K.C.; Jian, D.D.; Chen, Y.Z.; Li, J.L.; Chen, Q.; Wang, J.G. Conventional flooding irrigation causes an overuse of nitrogen fertilizer and low nitrogen use efficiency in intensively used solar greenhouse vegetable production. Agric Water Manag. 2014, 144, 11–19. [Google Scholar] [CrossRef]
- Yang, L.Q.; Huang, B.; Mao, M.C.; Yao, L.P.; Niedermann, S.; Hu, W.Y.; Chen, Y. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China. Environ Sci Pollut Res. 2016, 23, 17287–17297. [Google Scholar] [CrossRef]
- Qasim, W.; Xia, L.L.; Shan, L.; Wan, L.; Zhao, Y.M.; Butterbach-Bahl, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Wang, Y.C.; Deng, J.; Wang, L.G. Multiple-year nitrous oxide emissions from a greenhouse vegetable field in China: Effects of nitrogen management. Sci. Total Environ. 2018, 616, 1139–1148. [Google Scholar] [CrossRef]
- Cao, W.C.; Liu, S.; Qu, Z.; Song, H.; Qin, W.; Guo, J.H.; Chen, Q.; Lin, S.; Wang, J.G. Contribution and driving mechanism of N2O emission bursts in a Chinese vegetable greenhouse after manure application and irrigation. Sustainability 2019, 11, 1624. [Google Scholar] [CrossRef]
- Wei, Z.J.; Shan, J.; Well, R.; Yan, X.Y.; Senbayram, M. Land use conversion and soil moisture affect the magnitude and pattern of soil-borne N2, NO, and N2O emissions. Geoderma 2022, 407, 115568. [Google Scholar] [CrossRef]
- Wang, Y.P.; Houlton, B.Z. Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback. Geophys. Res. Lett. 2009, 36, L24403. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Treseder, K.K.; Howarth, R.W.; Menge, D.N. A “toy model” analysis of causes of nitrogen limitation in terrestrial ecosystems. Biogeochemistry 2022, 160, 381–394. [Google Scholar] [CrossRef]
- Groffman, P.M.; Altabet, M.A.; Böhlke, H.; Butterbach-Bahl, K.; David, M.B.; Firestone, M.K.; Giblin, A.E.; Kana, T.M.; Nielsen, L.P.; Voytek, M.A. Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecol. Appl. 2006, 16, 2091–2122. [Google Scholar] [CrossRef]
- Oulehle, F.; Goodale, C.L.; Evans, C.D.; Chuman, T.; Hruška, J.; Kram, P.; Navrátil, T.; Tesař, M.; Ač, A.; Urban, O.; et al. Dissolved and gaseous nitrogen losses in forests controlled by soil nutrient stoichiometry. Environ. Res. Lett. 2021, 16, 064025. [Google Scholar] [CrossRef]
- Yoshinari, T.; Hynes, R.; Knowles, R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 1977, 9, 177–183. [Google Scholar] [CrossRef]
- Scheer, C.; Rütting, T. Use of 15N tracers to study nitrogen flows in agro-ecosystems: Transformation, losses and plant uptake. Nutr. Cycl. Agroecosyst. 2023, 125, 89–93. [Google Scholar] [CrossRef]
- Yang, W.H.; Silver, W.L. Application of the N2/Ar technique to measuring soil-atmosphere N2 fluxes. Rapid Commun. Mass Spectrom. 2012, 26, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Senbayram, M.; Well, R.; Shan, J.; Bol, R.; Burkart, S.; Jones, D.L.; Wu, D. Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification. Plant Soil 2020, 448, 509–522. [Google Scholar] [CrossRef]
- Almaraz, M.; Wong, M.Y.; Yang, W.H. Looking back to look ahead: A vision for soil denitrification research. Ecology 2020, 101, e02917. [Google Scholar] [CrossRef]
- Mukumbuta, I.; Uchida, Y.; Hatano, R. Evaluating the effect of liming on N2O fluxes from denitrification in an Andosol using the acetylene inhibition and 15N isotope tracer methods. Biol. Fertil. Soils 2018, 54, 71–81. [Google Scholar] [CrossRef]
- Davidson, E.A.; Swank, W.T.; Perry, T.O. Distinguishing between nitrification and denitrification as sources of gaseous nitrogen production in soil. Appl. Environ. Microb. 1986, 52, 1280–1286. [Google Scholar] [CrossRef]
- Klemedtsson, L.; Svensson, B.H.; Rosswall, T. A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biol. Fertil. Soils 1988, 6, 112–119. [Google Scholar] [CrossRef]
- Maag, M.; Vinther, F.P. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol. 1996, 4, 5–14. [Google Scholar] [CrossRef]
- Jia, Z.J.; Conrad, R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol. 2009, 11, 1658–1671. [Google Scholar] [CrossRef] [PubMed]
- Offre, P.; Prosser, J.I.; Nicol, G.W. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol. Ecol. 2009, 70, 99–108. [Google Scholar] [CrossRef]
- Lin, W.; Ding, J.J.; Li, Y.Z.; Xu, C.Y.; Li, Q.Z.; Zheng, Q.; Zhuang, S. Effects of organic and inorganic fertilizers on emission and sources of N2O in vegetable soils. Chin. J. Appl. Ecol. 2018, 29, 1470–1478. (In Chinese) [Google Scholar] [CrossRef]
- Yu, K.; Seo, D.C.; DeLaune, R.D. Incomplete acetylene inhibition of nitrous oxide reduction in potential denitrification assay as revealed by using 15N-nitrate tracer. Commun. Soil Sci. Plan. 2010, 41, 2201–2210. [Google Scholar] [CrossRef]
- Nielsen, T.H.; Nielsen, L.P.; Revsbech, N.P. Nitrification and coupled nitrification-denitrification associated with a soil-manure interface. Soil Sci. Soc. Am. J. 1996, 60, 1829–1840. [Google Scholar] [CrossRef]
- Qin, S.P.; Yuan, H.J.; Dong, W.X.; Hu, C.S.; Oenema, O.; Zhang, Y.M. Relationship between soil properties and the bias of N2O reduction by acetylene inhibition technique for analyzing soil denitrification potential. Soil Biol. Biochem. 2013, 66, 182–187. [Google Scholar] [CrossRef]
- Knowles, R. Acetylene inhibition technique: Development; advantages; and potential problems. Denitrification in Soil and Sediment. In Denitrification in Soil and Sediment; Revsbech, N., Sørensen, J., Eds.; Plenum Press: New York, NY, USA, 1990; pp. 151–166. [Google Scholar] [CrossRef]
- Qin, S.P.; Hu, C.S.; Oenema, O. Quantifying the underestimation of soil denitrification potential as determined by the acetylene inhibition method. Soil Biol. Biochem. 2012, 47, 14–17. [Google Scholar] [CrossRef]
- Song, H.; Guo, J.H.; Ren, T.; Chen, Q.; Li, B.; Wang, J.G. Increase of soil pH in a solar greenhouse vegetable production system. Soil Sci. Soc. Am. J. 2012, 76, 2074–2082. [Google Scholar] [CrossRef]
- Molstad, L.; Dörsch, P.; Bakken, L. Robotized incubation system for monitoring gases (O2; NO.; N2O N2) in denitrifying cultures. J. Microbiol. Methods 2007, 71, 202–211. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen-inorganic forms. Methods of soil analysis. Agron. Monogr. 1982, 9, 643–698. [Google Scholar] [CrossRef]
- Smith, M.S.; Firestone, M.K.; Tiedje, J.M. The acetylene inhibition method for short-term measurement of soil denitrification and its evaluation using nitrogen-13. Soil Sci. Soc. Am. J. 1978, 42, 611–615. [Google Scholar] [CrossRef]
- Ryden, J.C.; Lund, L.J.; Letey, J.; Focht, D.D. Direct measurement of denitrification loss from soils: II. Development and application of field methods. Soil Sci. Soc. Am. J. 1979, 43, 110–118. [Google Scholar] [CrossRef]
- Weier, K.L.; Doran, J.W.; Power, J.F.; Walters, D.T. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 1993, 57, 66–72. [Google Scholar] [CrossRef]
- Simarmata, T.; Benckiser, G.; Ottow, J.C.G. Effect of an increasing carbon: Nitrate-N ratio on the reliability of acetylene in blocking the N2O-reductase activity of denitrifying bacteria in soil. Biol. Fertil. Soils 1993, 15, 107–112. [Google Scholar] [CrossRef]
- Akob, D.M.; Sutton, J.M.; Fierst, J.L.; Haase, K.B.; Baesman, S.; Luther, G.W.; Miller, L.G.; Oremland, R.S. Acetylenotrophy: A hidden but ubiquitous microbial metabolism? FEMS Microbiol. Ecol. 2018, 94, fiy103. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, R.Z.; Wang, Y.; Chen, G.L.; Fu, Y.Y.; Yu, H.Q. Carbon source shaped microbial ecology, metabolism and performance in denitrification systems. Water Res. 2023, 243, 120330. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Beauchamp, E.G. Acetylene as a possible substrate in the denitrification process. Can. J. Soil Sci. 1982, 62, 139–144. [Google Scholar] [CrossRef]
- Micucci, G.; Sgouridis, F.; McNamara, N.P.; Krause, S.; Lynch, I.; Roos, F.; Well, R.; Sami Ullah, S. The 15N-Gas flux method for quantifying denitrification in soil: Current progress and future directions. Soil Biol. Biochem. 2023, 184, 109108. [Google Scholar] [CrossRef]
- Blackmer, A.M.; Bremner, J.M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol. Biochem. 1978, 10, 187–191. [Google Scholar] [CrossRef]
- Glatzel, S.; Stahr, K. Methane and nitrous oxide exchange in differently fertilized grassland in southern Germany. Plant Soil 2001, 231, 21–35. [Google Scholar] [CrossRef]
- Włodarczyk, T.; Stępniewski, W.; Brzezińska, M.; Stępniewska, Z. Nitrate stability in loess soils under anaerobic conditions—Laboratory studies. J. Plant Nutr. Soil Sci. 2004, 167, 693–700. [Google Scholar] [CrossRef]
- Wlodarczyk, T.; Brzezinska, M.; Stepniewski, W.; Majewska, U.; Szarlip, P.; Księżopolska, A.; Pazur, M. Sequence and preference in the use of electron acceptors in flooded agricultural soils. Int. Agrophys. 2021, 35, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Haider, K.; Mosier, A.R.; Heinemeyer, O. Side effects of acetylene on the conversion of nitrate in soil. Pflanzenernaehr. Bodenk. 1983, 146, 623–633. [Google Scholar] [CrossRef]
- Kaspar, H.F.; Tiedje, J.M.; Firestone, R.B. Denitrification and dissimilatory nitrate reduction to ammonium in digested sludge. Can. J. Microbiol. 1981, 27, 878–885. [Google Scholar] [CrossRef]
- Cheng, Y.; Elrys, A.S.; Merwad, A.R.M.; Zhang, H.M.; Chen, Z.X.; Zhang, J.B.; Cai, Z.C.; Müller, C. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environ. Sci. Technol. 2022, 56, 3791–3800. [Google Scholar] [CrossRef]
pH | Soil Organic Carbon (g kg−1) | Total Nitrogen (g kg−1) | Olsen-P (mg kg−1) | Exchangeable Potassium (mg kg−1) | NH4+-N (mg kg−1) | NO2−-N (mg kg−1) | NO3−-N (mg kg−1) |
---|---|---|---|---|---|---|---|
6.54 ± 0.02 | 9.56 ± 0.38 | 1.55 ± 0.036 | 232 ± 0.75 | 240 ± 2.7 | 21.2 ± 0.24 | 0.066 ± 0.002 | 297 ± 44 |
Production Rate | Anoxic Conditions | Oxic Conditions | ||||
---|---|---|---|---|---|---|
0%C2H2 | 0.01%C2H2 | 10%C2H2 | 0%C2H2 | 0.01%C2H2 | 10%C2H2 | |
N2O-N (nmol g−1 h−1) | 2.75 ± 0.10 a | 2.69 ± 0.17 a | 0.01 ± 0.005 b | 0.0011 ± 0.0003 b | 0.004 ± 0.0029 a | 0.0011 ± 0.0001 b |
N2-N (nmol g−1 h−1) | 1.10 ± 0.11 b | 2.21 ± 1.49 b | 7.44 ± 2.07 a | 1.32 ± 0.25 b | 1.56 ± 0.16 b | 5.91 ± 1.61 a |
(N2O + N2)-N (nmol g−1 h−1) | 3.85 ± 0.20 b | 4.90 ± 1.47 b | 7.44 ± 2.07 a | 1.32 ± 0.25 b | 1.56 ± 0.16 b | 5.91 ± 1.61 a |
N2O/(N2O + N2) (%) | 71.47 ± 1.66 a | 58.25 ± 14.6 b | 0.13 ± 0.08 c | 0.09 ± 0.03 b | 0.26 ± 0.21 a | 0.02 ± 0.005 b |
AIT-bias (%) | −30.1 ± 4.50 b | −99.8 ± 0.12 a | −99.7 ± 0.22 a | −99.9 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Zhang, R.; Li, Y.; Pan, H.; Zhao, F.; Wang, C.; Xin, S.; Li, D.; Gao, Z.; Wang, Y. Influence of Acetylene Concentration on N2O and N2 Emissions from an Intensive Vegetable Soil under Anoxic and Oxic Conditions. Atmosphere 2024, 15, 1206. https://doi.org/10.3390/atmos15101206
Cao W, Zhang R, Li Y, Pan H, Zhao F, Wang C, Xin S, Li D, Gao Z, Wang Y. Influence of Acetylene Concentration on N2O and N2 Emissions from an Intensive Vegetable Soil under Anoxic and Oxic Conditions. Atmosphere. 2024; 15(10):1206. https://doi.org/10.3390/atmos15101206
Chicago/Turabian StyleCao, Wenchao, Runzhi Zhang, Yanqing Li, Haoqin Pan, Fei Zhao, Cuicui Wang, Shuo Xin, Dong Li, Ziyu Gao, and Yajing Wang. 2024. "Influence of Acetylene Concentration on N2O and N2 Emissions from an Intensive Vegetable Soil under Anoxic and Oxic Conditions" Atmosphere 15, no. 10: 1206. https://doi.org/10.3390/atmos15101206
APA StyleCao, W., Zhang, R., Li, Y., Pan, H., Zhao, F., Wang, C., Xin, S., Li, D., Gao, Z., & Wang, Y. (2024). Influence of Acetylene Concentration on N2O and N2 Emissions from an Intensive Vegetable Soil under Anoxic and Oxic Conditions. Atmosphere, 15(10), 1206. https://doi.org/10.3390/atmos15101206