A Quick Look at the Atmospheric Circulation Leading to Extreme Weather Phenomena on a Continental Scale
Abstract
:1. Introduction
2. Period Studies and Dataset
2.1. Period Studies and Large-Scale Data
2.2. Satellite Data
3. Results
3.1. September 2023: Omega Blocking Pattern
3.1.1. Heavy Precipitation, Flooding, and Dust Outbreak
3.1.2. Extreme Precipitation over Eastern Mediterranean and Dust Outbreak
3.1.3. Heatwave Conditions in the UK and France
3.2. September 2020: Landfall and Tornadoes in Portugal, Floods in Greece
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Couto, F.T.; Cardoso, E.H.C.; Costa, M.J.; Salgado, R.; Guerrero-Rascado, J.L.; Salgueiro, V. How a mesoscale cyclonic vortex over Sahara leads to a dust outbreak in South-western Iberia. Atmos. Res. 2021, 249, 105302. [Google Scholar] [CrossRef]
- Charlton-Perez, A.J.; Vukadinovic Greetham, D.; Hemingway, R. Storm naming and forecast communication: A case study of Storm Doris. Meteorol. Appl. 2019, 26, 682–697. [Google Scholar] [CrossRef]
- Fazel-Rastgar, F.; Sivakumar, V. A severe weather system accompanied by a stratospheric intrusion during unusual warm winter in 2015 over the South Africa: An initial synoptic analysis. Remote Sens. Appl. Soc. Environ. 2022, 28, 100833. [Google Scholar] [CrossRef]
- Ndarana, T.; Rammopo, T.S.; Bopape, M.J.; Reason, C.J.; Chikoore, H. Downstream development during South African cut-off low pressure systems. Atmos. Res. 2021, 249, 105315. [Google Scholar] [CrossRef]
- Pinheiro, H.; Gan, M.; Hodges, K. Structure and evolution of intense austral cut-off lows. Q. J. R. Meteorol. Soc. 2021, 147, 1–20. [Google Scholar] [CrossRef]
- Barnes, M.A.; King, M.; Reeder, M.; Jakob, C. The dynamics of slow-moving coherent cyclonic potential vorticity anomalies and their links to heavy rainfall over the eastern seaboard of Australia. Q. J. R. Meteorol. Soc. 2023, 149, 2233–2251. [Google Scholar] [CrossRef]
- Xulu, N.G.; Chikoore, H.; Bopape, M.-J.M.; Ndarana, T.; Muofhe, T.P.; Mbokodo, I.L.; Munyai, R.B.; Singo, M.V.; Mohomi, T.; Mbatha, S.M.S.; et al. Cut-Off Lows over South Africa: A Review. Climate 2023, 11, 59. [Google Scholar] [CrossRef]
- Pinheiro, H.R.; Hodges, K.I.; Gan, M.A.; Ferreira, S.H.S.; Andrade, K.M. Contributions of downstream baroclinic development to strong Southern Hemisphere cut-off lows. Q. J. R. Meteorol. Soc. 2021, 148, 214–232. [Google Scholar] [CrossRef]
- Barnes, M.A.; Turner, K.; Ndarana, T.; Landman, W.A. Cape storm: A dynamical study of a cut-off low and its impact on South Africa. Atmos. Res. 2021, 249, 105290. [Google Scholar] [CrossRef]
- Abba Omar, S.; Abiodun, B.J. Simulating the characteristics of cut-off low rainfall over the Western Cape using WRF. Clim. Dyn. 2021, 56, 1265–1283. [Google Scholar] [CrossRef]
- Abba Omar, S.; Abiodun, B.J. Characteristics of cut-off lows during the 2015–2017 drought in the Western Cape, South Africa. Atmos. Res. 2020, 235, 104722. [Google Scholar] [CrossRef]
- Dayan, U.; Lensky, I.M.; Ziv, B.; Khain, P. Atmospheric conditions leading to an exceptional fatal flash flood in the Negev Desert, Israel. Nat. Hazards Earth Syst. Sci. 2021, 21, 1583–1597. [Google Scholar] [CrossRef]
- Al-Nassar, A.R.; Pelegrí, J.L.; Sangrà, P.; Alarcon, M.; Jansa, A. Cut-off low systems over Iraq: Contribution to annual precipitation and synoptic analysis of extreme events. Int. J. Climatol. 2020, 40, 908–926. [Google Scholar] [CrossRef]
- Miri, M.; Raziei, T.; Zand, M.; Kousari, M.R. Synoptic aspects of two flash flood-inducing heavy rainfalls in southern Iran during 2019–2020. Nat. Hazards 2023, 115, 2655–2672. [Google Scholar] [CrossRef]
- Couto, F.T.; Salgado, R.; Costa, M.J. Analysis of intense rainfall events on Madeira Island during the 2009/2010 winter. Nat. Hazards Earth Syst. Sci. 2012, 12, 2225–2240. [Google Scholar] [CrossRef]
- Couto, F.T.; Ducrocq, V.; Salgado, R.; Costa, M.J. Understanding significant precipitation in Madeira island using high-resolution numerical simulations of real cases. Q. J. R. Meteorol. Soc. 2017, 143, 251–264. [Google Scholar] [CrossRef]
- Couto, F.T.; Ducrocq, V.; Salgado, R.; Costa, M.J. Numerical simulations of significant orographic precipitation in Madeira island. Atmos. Res. 2016, 169, 102–112. [Google Scholar] [CrossRef]
- Francis, D.; Alshamsi, N.; Cuesta, J.; Gokcen Isik, A.; Dundar, C. Cyclogenesis and Density Currents in the Middle East and the Associated Dust Activity in September 2015. Geosciences 2019, 9, 376. [Google Scholar] [CrossRef]
- Francis, D.; Eayrs, C.; Chaboureau, J.-P.; Mote, T.; Holland, D.M. A meandering polar jet caused the development of a Saharan cyclone and the transport of dust toward Greenland. Adv. Sci. Res. 2019, 16, 49–56. [Google Scholar] [CrossRef]
- Baltaci, H.; Akkoyunlu, B.O.; Tayanc, M. An Extreme Hailstorm on 27 July 2017 in Istanbul, Turkey: Synoptic Scale Circulation and Thermodynamic Evaluation. Pure Appl. Geophys. 2018, 175, 3727–3740. [Google Scholar] [CrossRef]
- Sfîcă, L.; Istrate, V.; Hrițac, R.; Machidon, O. The continental and regional synoptic background favorable for hailstorms occurrence in North-Eastern Romania. Prog. Phys. Geogr. Earth Environ. 2023, 47, 3–31. [Google Scholar] [CrossRef]
- Luo, B.; Luo, D.; Dai, A.; Xiao, C.; Simmonds, I.; Hanna, E.; Overland, J.; Shi, J.; Chen, X.; Yao, Y.; et al. Rapid summer Russian Arctic sea-ice loss enhances the risk of recent Eastern Siberian wildfires. Nat. Commun. 2024, 15, 5399. [Google Scholar] [CrossRef] [PubMed]
- Couto, F.T.; Salgado, R.; Guiomar, N. Forest Fires in Madeira Island and the Fire Weather Created by Orographic Effects. Atmosphere 2021, 12, 827. [Google Scholar] [CrossRef]
- Couto, F.T.; Santos, F.L.M.; Campos, C.; Andrade, N.; Purificação, C.; Salgado, R. Is Portugal Starting to Burn All Year Long? The Transboundary Fire in January 2022. Atmosphere 2022, 13, 1677. [Google Scholar] [CrossRef]
- Jafari Hombari, F.; Barati, G.; Moradi, M. Relations between Durability of Spring Frosts and North Advection on Omega Blocking Over Iran. Pure Appl. Geophys. 2021, 178, 671–687. [Google Scholar] [CrossRef]
- Woollings, T.; Barriopedro, D.; Methven, J.; Son, S.W.; Martius, O.; Harvey, B.; Sillmann, J.; Lupo, A.R.; Seneviratne, S. Blocking and its Response to Climate Change. Curr. Clim. Change Rep. 2018, 4, 287–300. [Google Scholar] [CrossRef]
- Kautz, L.-A.; Martius, O.; Pfahl, S.; Pinto, J.G.; Ramos, A.M.; Sousa, P.M.; Woollings, T. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—A review. Weather Clim. Dyn. 2022, 3, 305–336. [Google Scholar] [CrossRef]
- Uda, T.; Sakajo, T.; Inatsu, M.; Koga, K. Identification of atmospheric blocking with morphological type by topological flow data analysis. J. Meteorol. Soc. Jpn. 2021, 99, 1169–1183. [Google Scholar] [CrossRef]
- Detring, C.; Müller, A.; Schielicke, L.; Névir, P.; Rust, H.W. Occurrence and transition probabilities of omega and high-over-low blocking in the Euro-Atlantic region. Weather Clim. Dyn. 2021, 2, 927–952. [Google Scholar] [CrossRef]
- ECMWF—MARS User Documentation. Available online: https://confluence.ecmwf.int/display/UDOC/MARS+user+documentation (accessed on 7 May 2024).
- Eumetsat, Eumetview. 2024. Available online: https://view.eumetsat.int/productviewer?v=default (accessed on 1 April 2024).
- Eumetsat, CloudTop. 2024. Available online: https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:CTH (accessed on 1 April 2024).
- Eumetsat, AirmassRGB. 2024. Available online: https://data.eumetsat.int/product/EO:EUM:DAT:MSG:AIRMASS (accessed on 1 April 2024).
- Worldview Earthdata. 2024. Available online: https://worldview.earthdata.nasa.gov/ (accessed on 1 April 2024).
- Sarkar, N.; Rizzo, A.; Vandelli, V.; Soldati, M. A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot. Sustainability 2022, 14, 15994. [Google Scholar] [CrossRef]
- Hagay, O.; Brenner, S. Sensitivity of Simulations of Extreme Mediterranean Storms to the Specification of Sea Surface Temperature: Comparison of Cases of a Tropical-Like Cyclone and Explosive Cyclogenesis. Atmosphere 2021, 12, 921. [Google Scholar] [CrossRef]
- Kouroutzoglou, J.; Samos, I.; Flocas, H.A.; Hatzaki, M.; Lamaris, C.; Mamara, A.; Emmannouil, A. Analysis of the Transition of an Explosive Cyclone to a Mediterranean Tropical-like Cyclone. Atmosphere 2021, 12, 1438. [Google Scholar] [CrossRef]
- Campos, C.; Couto, F.T.; Santos, F.L.M.; Rio, J.; Ferreira, T.; Salgado, R. ECMWF Lightning Forecast in Mainland Portugal during Four Fire Seasons. Atmosphere 2024, 15, 156. [Google Scholar] [CrossRef]
- Valkaniotis, S.; Papathanassiou, G.; Marinos, V.; Saroglou, C.; Zekkos, D.; Kallimogiannis, V.; Karantanellis, E.; Farmakis, I.; Zalachoris, G.; Manousakis, J.; et al. Landslides Triggered by Medicane Ianos in Greece, September 2020: Rapid Satellite Mapping and Field Survey. Appl. Sci. 2022, 12, 12443. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Karagiannidis, A.; Dafis, S.; Kalimeris, A.; Kotroni, V. Ianos—A Hurricane in the Mediterranean. Bull. Am. Meteorol. Soc. 2022, 103, E1621–E1636. [Google Scholar] [CrossRef]
- Antokhina, O.; Antokhin, P.; Gochakov, A.; Zbirannik, A.; Gazimov, T. Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia. Atmosphere 2023, 14, 480. [Google Scholar] [CrossRef]
- Patterson, M.; Bracegirdle, T.; Woollings, T. Southern Hemisphere atmospheric blocking in CMIP5 and future changes in the Australia-New Zealand sector. Geophys. Res. Lett. 2019, 46, 9281–9290. [Google Scholar] [CrossRef]
- Jeong, D.I.; Yu, B.; Cannon, A.J. Links between atmospheric blocking and North American winter cold spells in two generations of Canadian Earth System Model large ensembles. Clim. Dyn. 2021, 57, 2217–2231. [Google Scholar] [CrossRef]
- Wazneh, H.; Gachon, P.; Laprise, R.; de Vernal, A.; Tremblay, B. Atmospheric blocking events in the North Atlantic: Trends and links to climate anomalies and teleconnections. Clim. Dyn. 2021, 56, 2199–2221. [Google Scholar] [CrossRef]
- Lapointe, F.; Karmalkar, A.V.; Bradley, R.S.; Retelle, M.J.; Wang, F. Climate extremes in Svalbard over the last two millennia are linked to atmospheric blocking. Nat. Commun. 2024, 15, 4432. [Google Scholar] [CrossRef]
- Jędruszkiewicz, J.; Wibig, J.; Piotrowski, P. Heat waves in Poland: The relations to atmospheric circulation and Arctic warming. Int. J. Climatol. 2024, 44, 2189–2206. [Google Scholar] [CrossRef]
- Parker, T.J.; Berry, G.J.; Reeder, M.J. The Structure and Evolution of Heat Waves in Southeastern Australia. J. Clim. 2014, 27, 5768–5785. [Google Scholar] [CrossRef]
- Ormanova, G.; Karaca, F.; Kononova, N. Analysis of the impacts of atmospheric circulation patterns on the regional air quality over the geographical center of the Eurasian continent. Atmos. Res. 2020, 237, 104858. [Google Scholar] [CrossRef]
- Özdemir, E.T.; Birinci, E.; Deniz, A. Multi-source observations on the effect of atmospheric blocking on air quality in İstanbul: A study case. Environ. Monit. Assess. 2024, 196, 698. [Google Scholar] [CrossRef] [PubMed]
- Sayad, B.; Osra, O.A.; Binyaseen, A.M.; Qattan, W.S. Analyzing Urban Climatic Shifts in Annaba City: Decadal Trends, Seasonal Variability and Extreme Weather Events. Atmosphere 2024, 15, 529. [Google Scholar] [CrossRef]
- Wang, H.; Luo, D.; Chen, Y.; Ge, Y. Spatially Heterogeneous Effects of Atmospheric Circulation on Greenland Ice Sheet Melting. Atmosphere 2024, 15, 57. [Google Scholar] [CrossRef]
- Blau, M.T.; Ha, K.J.; Chung, E.S. Extreme summer temperature anomalies over Greenland largely result from clear-sky radiation and circulation anomalies. Commun. Earth Environ. 2024, 5, 405. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Frederiksen, J.S.; Frederiksen, C.S.; Horenko, I. Beyond the First Tipping Points of Southern Hemisphere Climate. Climate 2024, 12, 81. [Google Scholar] [CrossRef]
- Mendes, M.C.D.; da Silva Aragão, M.R.; Mendes, D.; Mesquita, M.D.; Correia, M.D.F.; Cavalcanti, E.P. Synoptic–dynamic indicators associated with blocking events over the Southeastern Pacific and South Atlantic oceans. Clim. Dyn. 2023, 60, 2285–2301. [Google Scholar] [CrossRef]
- Lupo, A.R. Atmospheric blocking events: A review. Ann. N. Y. Acad. Sci. 2021, 1504, 5–24. [Google Scholar] [CrossRef]
- Bozkurt, D.; Marín, J.C.; Verdugo, C.; Barrett, B.S. Atmospheric blocking and temperatures in the Antarctic Peninsula. Sci. Total Environ. 2024, 931, 172852. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Bonfim, O.T.; Mortarini, L.; Valdes, R.H.; Costa, F.D.; Maroneze, R. Atmospheric Blocking Events over the Southeast Pacific and Southwest Atlantic Oceans in the CMIP6 Present-Day Climate. Climate 2024, 12, 84. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, F.T.; Kartsios, S.; Lacroix, M.; Andrade, H.N. A Quick Look at the Atmospheric Circulation Leading to Extreme Weather Phenomena on a Continental Scale. Atmosphere 2024, 15, 1205. https://doi.org/10.3390/atmos15101205
Couto FT, Kartsios S, Lacroix M, Andrade HN. A Quick Look at the Atmospheric Circulation Leading to Extreme Weather Phenomena on a Continental Scale. Atmosphere. 2024; 15(10):1205. https://doi.org/10.3390/atmos15101205
Chicago/Turabian StyleCouto, Flavio Tiago, Stergios Kartsios, Matthieu Lacroix, and Hugo Nunes Andrade. 2024. "A Quick Look at the Atmospheric Circulation Leading to Extreme Weather Phenomena on a Continental Scale" Atmosphere 15, no. 10: 1205. https://doi.org/10.3390/atmos15101205
APA StyleCouto, F. T., Kartsios, S., Lacroix, M., & Andrade, H. N. (2024). A Quick Look at the Atmospheric Circulation Leading to Extreme Weather Phenomena on a Continental Scale. Atmosphere, 15(10), 1205. https://doi.org/10.3390/atmos15101205