Benchmarking Water-Use Efficiency for Wheat at Leaf and Ecosystem Scales
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Research Area and Experimental Design
2.2. The Experimental Observation Items and Methods
2.2.1. Leaf-Level Data Observation
2.2.2. Leaf Exchange Data from Literature
2.2.3. Flux Data Observation and Processing
2.3. The Calculation Method for Water-Use Efficiency (WUE)
3. Results
3.1. The Consistency of Leaf-Scale Observations across Different Observation Times, Water Stress Levels, and Climate Zones
3.2. Analysis of Leaf-Scale Influencing Factors
3.2.1. The Influence of Light and Temperature
3.2.2. The Influence of Vapor Pressure Deficit
3.2.3. The Influence of Soil Water
3.3. Maximum Water-Use Efficiency of Wheat Agroecosystems at Different Time Scales in Various Climatic Regions
3.3.1. Different Temporal Scales
3.3.2. Water-Use Efficiency Variations at the Half-Hour Scale
3.3.3. The Variation of Maximum Water-Use Efficiency at the Daily Scale in Wheat Agroecosystems during Different Growth Stages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maestrini, B.; Basso, B. Predicting spatial patterns of within-field crop yield variability. Field Crops Res. 2018, 219, 106–112. [Google Scholar] [CrossRef]
- Mbava, N.; Mutema, M.; Zengeni, R.; Shimelis, H.; Chaplot, V. Factors affecting crop water use efficiency: A worldwide meta-analysis. Agric. Water Manag. 2020, 228, 105878. [Google Scholar] [CrossRef]
- Nechifor, V.; Winning, M. Global crop output and irrigation water requirements under a changing climate. Heliyon 2019, 5, e01266. [Google Scholar] [CrossRef]
- Tallec, T.; Béziat, P.; Jarosz, N.; Rivalland, V.; Ceschia, E. Crops’ water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agric. For. Meteorol. 2013, 168, 69–81. [Google Scholar] [CrossRef]
- Bchir, A.; Escalona, J.M.; Galle, A.; Hernandez-Montes, E.; Tortosa, I.; Brahama, M.; Medrano, H. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): Looking for the most representative sample and sampling time. Agric. Water Manag. 2016, 167, 11–20. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef]
- Gao, H.H.; Yan, C.R.; Liu, Q.; Li, Z.; Yang, X.; Qi, R.M. Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis. Agric. Water Manag. 2019, 225, 105741. [Google Scholar] [CrossRef]
- Sadras, V.O.; Angus, J.F. Benchmarking water-use efficiency of rainfed wheat in dry environments. Aust. J. Agric. Res. 2006, 57, 847–856. [Google Scholar] [CrossRef]
- Huxman, T.E.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F.; et al. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef]
- Knapp, A.K.; Burns, C.E.; Fynn, R.W.S.; Kirkman, K.P.; Morris, C.D.; Smith, M.D. Convergence and contingency in production–precipitation relationships in North American and South African C4 grasslands. Oecologia 2006, 149, 456–464. [Google Scholar] [CrossRef]
- Ferraz, T.M.; Rodrigues, W.P.; Netto, A.T.; Reis, F.D.; Peçanha, A.L.; de Assis Figueiredo, F.A.M.M.; de Sousa, E.F.; Glenn, D.M.; Campostrini, E. Comparison between single-leaf and whole-canopy gas exchange measurements in papaya (Carica papaya L.) plants. Sci. Hortic. 2016, 209, 73–78. [Google Scholar] [CrossRef]
- Liu, J.; Hu, T.T.; Fang, L.; Peng, X.Y.; Liu, F.L. CO2 elevation modulates the response of leaf gas exchange to progressive soil drying in tomato plants. Agric. For. Meteorol. 2019, 268, 181–188. [Google Scholar] [CrossRef]
- Baldocchi, D.D. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency. Agric. For. Meteorol. 1994, 67, 291–321. [Google Scholar] [CrossRef]
- Law, B.E.; Falge, E.; Gu, L. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [Google Scholar] [CrossRef]
- Montagnani, L.; Zanotelli, D.; Tagliavini, M.; Tomelleri, E. Timescale effects on the environmental control of carbon and water fluxes of an apple orchard. Ecol. Evol. 2018, 8, 416–434. [Google Scholar] [CrossRef]
- Vialet-Chabrand, S.; Matthews, J.S.A.; Brendel, O.; Blatt, M.R.; Wang, Y.; Hills, A.; Griffiths, H.; Rogers, S.; Lawson, T. Modelling water use efficiency in a dynamic environment: An example using Arabidopsis thaliana. Plant Sci. 2016, 251, 65–74. [Google Scholar] [CrossRef]
- Gowik, U.; Brautigam, A.; Weber, K.L.; Weber, A.P.; Westhoff, P. Evolution of C4 photosynthesis in the genus flaveria: How many and which genes does it take to make C4? Plant Cell 2011, 23, 2087–2105. [Google Scholar] [CrossRef]
- Buckley, T.N.; Sack, L.; Farquhar, G.D. Optimal plant water economy. Plant Cell Environ. 2017, 40, 881–896. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Y.Q.; Liu, Y.F.; Shi, P.L. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes. Ann. Bot. 2004, 93, 435–441. [Google Scholar] [CrossRef]
- Vuichard, N.; Ciais, P.; Viovy, N.; Li, L.H.; Ceschia, E.; Wattenbach, M.; Bernhofer, C.; Emmel, C.; Grünwald, T.; Jans, W.; et al. Simulating the net ecosystem CO2 exchange and its components over winter wheat cultivation sites across a large climate gradient in Europe using the ORCHIDEE-STICS generic model. Agric. Ecosyst. Environ. 2016, 226, 1–17. [Google Scholar] [CrossRef]
- Tong, X.J.; Li, J.; Yu, Q. Ecosystem water use efficiency in an irrigated cropland in the North China Plain. J. Hydrol. 2009, 374, 329–337. [Google Scholar] [CrossRef]
- Cleverly, J.; Vote, C.; Isaac, P. Carbon, water and energy fluxes in agricultural systems of Australia and New Zealand. Agric. For. Meteorol. 2020, 287, 107934. [Google Scholar] [CrossRef]
- Lin, Y.S.; Medlyn, B.E.; Duursma, R.A.; Prentice, I.C.; Wang, H.; Baig, S.; Eamus, D.; de Dios, V.R.; Mitchell, P.; Ellsworth, D.S.; et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 2015, 5, 459–464. [Google Scholar] [CrossRef]
- Buckley, T.N.; Mott, K.A. Modelling stomatal conductance in response to environmental factors. Plant Cell Environ. 2013, 36, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- French, R.; Schultz, J. Water use efficiency of wheat in a Mediterranean-type environment. I. The relation between yield, water use and climate. Aust. J. Agric. Res. 1984, 35, 743–764. [Google Scholar] [CrossRef]
- Rad, M.H.; Sarkheil, H.; Khojastehpour, R. Analysing water use efficiency and productivity in Iran’s metropolises. Proc. Inst. Civ. Eng. Water Manag. 2019, 172, 102–108. [Google Scholar]
- Gobbett, D.L.; Hochman, Z.; Horan, H.; Garcia, J.N.; Grassini, P.; Cassman, K.G. Yield gap analysis of rainfed wheat demonstrates local to global relevance. J. Agric. Sci. 2017, 155, 282–299. [Google Scholar] [CrossRef]
- Slafer, G.A.; Rawson, H.M. Base and optimum temperatures vary with genotype and stage of development in wheat. Plant Cell Environ. 1995, 18, 671–679. [Google Scholar] [CrossRef]
- Fitsum, T.; Haimanote, B.; Bruce, S.; Yiannis, A.; Gerrit, H.; Aditya, S. Exploring deficit irrigation as a water conservation strategy: Insights from field experiments and model simulation. Agric. Water Manag. 2023, 289, 108490. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Liu, J.; Zhang, Q.; Zhang, L.; Qi, Y.; Chen, F. Benchmarking Water-Use Efficiency for Wheat at Leaf and Ecosystem Scales. Atmosphere 2024, 15, 163. https://doi.org/10.3390/atmos15020163
Zhao F, Liu J, Zhang Q, Zhang L, Qi Y, Chen F. Benchmarking Water-Use Efficiency for Wheat at Leaf and Ecosystem Scales. Atmosphere. 2024; 15(2):163. https://doi.org/10.3390/atmos15020163
Chicago/Turabian StyleZhao, Funian, Jiang Liu, Qiang Zhang, Liang Zhang, Yue Qi, and Fei Chen. 2024. "Benchmarking Water-Use Efficiency for Wheat at Leaf and Ecosystem Scales" Atmosphere 15, no. 2: 163. https://doi.org/10.3390/atmos15020163
APA StyleZhao, F., Liu, J., Zhang, Q., Zhang, L., Qi, Y., & Chen, F. (2024). Benchmarking Water-Use Efficiency for Wheat at Leaf and Ecosystem Scales. Atmosphere, 15(2), 163. https://doi.org/10.3390/atmos15020163