Associations between Climate Variability and Livestock Production in Botswana: A Vector Autoregression with Exogenous Variables (VARX) Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Sources
2.3. Data Analysis: The VARX Model
2.3.1. Pre-Diagnostic Tests
Unit Root Test
Lag Length Criteria
Cointegration Test
3. Results and Discussion
3.1. Trends of Cattle and Goat Population
3.2. Pre-Diagnostic Tests
3.2.1. Unit Root Test Estimations and Results
3.2.2. Lag Length Criteria
3.2.3. Johansen Cointegration Test Estimations
3.3. VARX Model Estimations
3.4. Post-Diagnostic Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | T-Statistics at Level | T-Statistics at 1st Difference |
---|---|---|
CP | −0.806 | −5.243 *** |
GP | −1.441 | 7.929 *** |
AALA | −1.441 | −7.523 *** |
AMASAT | −5.664 *** | |
AMISAT | −3.237 ** | |
WY | −7.207 *** | |
DY | −8.164 *** |
Lag | LL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | −1037.84 | NA | 7.30 × 1016 | 44.50 | 44.82 | 44.62 |
1 | −990.57 | 82.57 | 1.16 × 1016 | 42.66 | 43.13 * | 42.84 |
2 | −985.40 | 8.58 | 1.11 × 1016 | 42.61 | 43.24 | 42.85 |
3 | −979.34 | 9.55 * | 1.02 × 1016* | 42.53 * | 43.31 | 42.93 * |
Lag | LL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | −734.34 | NA | 9.32 × 1010 | 30.93 | 31.24 | 31.05 |
1 | −673.19 | 107.08 * | 8.61 × 109 | 28.55 | 29.02 * | 28.73 * |
2 | −670.22 | 4.96 | 9.02 × 109 | 28.59 | 29.22 | 28.83 |
3 | −664.88 | 8.45 | 8.59 × 109 * | 28.54 * | 29.32 | 28.83 |
Hypothesized No. of CE(s) | Eigenvalue | Trace | Maximum Eigenvalue | ||||
---|---|---|---|---|---|---|---|
Statistics | 0.05 CV | Prob. # | Statistics | 0.05 CV | Prob. # | ||
None | 0.49 | 72.386 | 69.819 | 0.03 ** | 35.022 | 33.877 | 0.077 * |
At most 1 | 0.333 | 40.110 | 47.856 | 0.219 | 19.057 | 27.584 | 0.410 |
At most 2 | 0.224 | 21.053 | 29.797 | 0.334 | 12.226 | 21.132 | 0.554 |
At most 3 | 0.163 | 9.120 | 15.495 | 0.351 | 8.383 | 14.265 | 0.341 |
At most 4 | 0.015 | 0.736 | 3.841 | 0.391 | 0.736 | 3.841 | 0.391 |
Hypothesized No. of CE(s) | Eigenvalue | Trace | Maximum Eigenvalue | ||||
---|---|---|---|---|---|---|---|
Statistics | 0.05 CV | Prob. # | Statistics | 0.05 CV | Prob. # | ||
None | 0.573 | 91.482 | 69.819 | 0.00 *** | 41.713 | 33.877 | 0.00 *** |
At most 1 | 0.408 | 49.769 | 47.856 | 0.03 ** | 25.682 | 27.584 | 0.09 * |
At most 2 | 0.310 | 24.087 | 29.797 | 0.20 | 18.192 | 21.132 | 0.12 |
At most 3 | 0.072 | 5.896 | 15.495 | 0.71 | 3.666 | 14.265 | 0.89 |
At most 4 | 0.044 | 2.230 | 3.841 | 0.14 | 2.230 | 3.841 | 0.14 |
References
- FAO. World Food and Agriculture—Statistical Yearbook 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Peyraud, J.; MacLeod, M. European Commission, Directorate—General, Future of EU Livestock: How to Contribute to a Sustainable Agricultural Sector? Final Report; Publications Office: Luxembourg, 2020; Available online: https://op.europa.eu.en/publication-detail/-/publication/b10852e8.0c33-11eb-bc070laa75ed71a1/language-en (accessed on 20 January 2024).
- Faisal, M.; Abbas, A.; Xia, C.; Raza, M.A.; Akhtar, S.; Ajmal, M.A.; Mushtaq, Z.; Cai, Y. Assessing small livestock herders’ adaptation to climate variability and its impact on livestock losses and poverty. Clim. Risk Manag. 2021, 34, 100358. [Google Scholar] [CrossRef]
- Feng, X.; Qiu, H.; Pan, J.; Tang, J. The impact of climate change on livestock production in pastoral areas of China. Sci. Total Environ. 2021, 770, 144838. [Google Scholar] [CrossRef] [PubMed]
- Clements, F.E. Research Methods in Ecology; University Publishing Co.: Lincoln, NE, USA, 1905. [Google Scholar]
- Clements, F.E. Plant Succession: An Analysis of the Development of Vegetation; Carnegie Institution of Washington: Washington, DC, USA, 1916. [Google Scholar]
- Clements, F.E. Plant Indicators: The Relation of Plant Communities to Process and Practice; Carnegie Institution of Washington: Washington, DC, USA, 1920. [Google Scholar]
- Clements, F.E. Plant Succession and Indicators: A Definitive Edition of Plant Succession and Plant Indicators; Carnegie Institution of Washington, Hafner: Washington, DC, USA, 1928. [Google Scholar]
- Clements, F.E. Dynamics of Vegetation; Allred, B.W., Clements, E.S., Eds.; H. W. Wilson: Bronx, NY, USA, 1949. [Google Scholar]
- Leweri, C.M.; Msuha, M.J.; Treydte, A.C. Rainfall variability and socio-economic constraints on livestock production in the Ngorongoro Conservation Area, Tanzania. SN Appl. Sci. 2021, 3, 123. [Google Scholar] [CrossRef]
- Palmer, P.I.; Wainwright, C.M.; Dong, B.; Maidment, B.I.; Wheller, K.G.; Gedney, N.; Hickman, H.I.; Madani, N.; Folwell, S.S.; Abdo, S.; et al. Drivers and impacts of Eastern African rainfall variability. Nat. Rev. Earth Environ. 2023, 4, 254–270. [Google Scholar] [CrossRef]
- O’Reagain, P.; Bushell, J.; Holloway, C.; Reid, A. Managing for rainfall variability: Effect of grazing strategy on cattle production in a dry tropical savanna. Anim. Prod. Sci. 2009, 49, 85–99. [Google Scholar] [CrossRef]
- UNDP. Agricultural Transformation Model Adapting to Climate Change in the Mekong Delta; UNDP: New York, NY, USA, 2008. [Google Scholar]
- United Nations Development Program (UNDP). Resilient Food and Agriculture; UNDP: New York, NY, USA, 2020. [Google Scholar]
- UNDP. Climate Change Adaptation Project (CCAP) Second Quarter 2016; UNDP: New York, NY, USA, 2016. [Google Scholar]
- World Meteorological Organization (WMO). Statement on the State of the Global Climate; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Kinda, S.R.; Badolo, F. Does rainfall variability matter for food security in developing countries? Cogent. Econ. Financ. 2019, 7, 1640098. [Google Scholar] [CrossRef]
- Angel, S.P.; Amitha, J.P.; Rashamol, V.P.; Vandana, G.D.; Savitha, S.T. Climate Change and Cattle Production: Impact and Adaptation. J. Vet. Med. Res. 2018, 5, 1134. Available online: https://www.researchgate.net/publication/325333916 (accessed on 3 August 2023).
- Negeri, M.B. The Effects of El Nino on Agricultural GDP of Ethiopia. Am. J. Water Sci. Eng. 2017, 3, 45. [Google Scholar] [CrossRef]
- Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; Digiacomo, K.; Chauhan, S.S. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 2020, 10, 867. [Google Scholar] [CrossRef]
- Sejian, V.; Silpa, M.V.; Reshma Nair, M.R.; Devaraj, C.; Krishan, G.; Bagath, M.; Cauchan, S.S.; Suganthi, R.U.; Fonseca, V.F.C.; Konig, S.; et al. Heat stress and goat welfare: Adaptation and production considerations. Animals 2021, 11, 1021. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.H.; Ma, X.; Luo, D.X.; Gong, Z.H.; Lu, M.H. The plant heat stress transcription factors (HSFS): Structure, regulation, and function in response to abiotic stresses. Front Plant Sci. 2016, 7, 180954. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Staggenborg, S.A.; Ristic, Z. Impacts of Drought and/or Heat Stress on Physiological, Developmental, Growth, and Yield Processes of Crop Plants. In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes; Ahuja, L.R., Reddy, V.R., Saseendran, S.A., Yu, Q., Eds.; American Society of Agronomy: Madison, WI, USA, 2008; pp. 301–355. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- Sanz-Sáez, Á.; Erice, G.; Aguirreolea, J.; Muñoz, F.; Sánchez-Díaz, M.; Irigoyen, J.J. Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain. J. Plant Physiol. 2012, 169, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Dellar, M.; Topp, C.F.E.; Banos, G.; Wall, E. A meta-analysis on the effects of climate change on the yield and quality of European pastures. Agric. Ecosyst. Environ. 2018, 265, 413–420. [Google Scholar] [CrossRef]
- Akinmoladun, O.F.; Muchenje, V.; Fon, F.N.; Mpendulo, C.T. Small Ruminants: Farmers’ Hope in a World Threatened by Water Scarcity. Animals 2019, 9, 456. [Google Scholar] [CrossRef] [PubMed]
- Akinmoladun, O.F.; Mpendulo, C.T.; Ayoola, M.O. Assessment of the adaptation of Nguni goats to water stress. Animal 2023, 17, 100911. [Google Scholar] [CrossRef] [PubMed]
- Daramola, J.O.; Abioja, M.O.; Iyasere, O.S.; Oke, O.E.; Majekodumni, B.C.; Logunleko, M.O.; Adekunle, E.O.; Nwosu, E.U.; Smith, O.F.; James, I.J.; et al. The resilience of Dwarf goats to environmental stress: A review. Small Rumin. Res. 2021, 205, 106534. [Google Scholar] [CrossRef]
- Koluman, N. Goats and Their Role in Climate Change. Small Rumin. Res. 2023, 228, 107094. [Google Scholar] [CrossRef]
- Utaaker, K.S.; Chaudhary, S.; Kifleyohannes, T.; Robertson, L.J. Global Goat! Is the Expanding Goat Population an Important Reservoir of Cryptosporidium? Front. Vet. Sci. 2021, 8, 648500. [Google Scholar] [CrossRef]
- Ayanlade, A.; Ojebisi, S.M. Climate change impacts on cattle production: Analysis of cattle herders’ climate variability/change adaptation strategies in Nigeria. Change Adapt. Soc.-Ecol. Syst. 2020, 5, 12–23. [Google Scholar] [CrossRef]
- Wako, G.; Tadesse, M.; Angassa, A. Camel management as an adaptive strategy to climate change by pastoralists in southern Ethiopia. Ecol. Process. 2017, 6, 26. [Google Scholar] [CrossRef]
- Sönke, K.; Eckstein, D.; Dorsch, L.; Fischer, L. Global Climate Risk Index 2016: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2014 and 1995 to 2014; Germanwatch: Bonn, Germany, 2015; ISBN 978-3-943704-04-4. [Google Scholar]
- Kabubo-Mariara, J. The Economic Impact of Global Warming on Livestock Husbandry in Kenya; A Ricardian Analysis. In Proceedings of the African Economic Conference on Globalization, Institutions and Economic Development of Africa, Tunis, Tunisia, 12–14 November 2008; Available online: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Knowledge/30753359-EN-133-KABUBO-MARIARA.PDF (accessed on 15 November 2023).
- Kabubo-Mariara, J. Global warming and livestock husbandry in Kenya: Impacts and adaptations. Ecol. Econ. 2009, 68, 1915–1924. [Google Scholar] [CrossRef]
- Miller, B.A.; Lu, C.D. Current status of global dairy goat production: An overview. Asian-Austral. J. Anim Sci. 2019, 32, 1219–1232. [Google Scholar] [CrossRef]
- International Trade Administration. Agricultural Sectors; International Trade Administration: Washington, DC, USA, 2022. Available online: https://www.trade.gov/country-commercial-guides/botswana-agricultural-sectors (accessed on 6 February 2023).
- Monau, P.I.; Visser, C.; Nsoso, S.J.; Van Marle-Köster, E. A survey analysis of indigenous goat production in communal farming systems of Botswana. Trop. Anim. Health Prod. 2017, 49, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Nsoso, S.J.; Monkhei, M.; Tlhwaafalo, B.E. A survey of traditional small stock farmers in Molelopole North, Kweneng district, Botswana: Demographic parameters, market practices and marketing channels. Livest. Res. Rural. Dev. 2004, 16. Available online: http://www.lrrd.org/lrrd16/12/nsos16100.htm (accessed on 6 February 2023).
- Bahta, S.; Temoso, O.; Mekonnen, D.; Malope, P.; Staal, S. Technical efficiency of beef production in agricultural districts of Botswana: A Latent Class Stochastic Frontier Model Approach. In Proceedings of the 30th International Conference of Agricultural Economists, Vancouver, BC, Canada, 28 July–2 August 2018; pp. 1–26. [Google Scholar]
- Ngwako, G. Commercialization and Household Welfare among Smallholder Goat Farmers in Kweneng East Sub-District, Botswana; Egerton University: Egerton-Njoro, Kenya, 2021. [Google Scholar]
- Temoso, O.; Villano, R.; Hadley, D. Evaluating the productivity gap between commercial and traditional beef production systems in Botswana. Agric. Syst. 2016, 149, 30–39. [Google Scholar] [CrossRef]
- Statistics Botswana. Agriculture; Statistics Botswana: Gaborone, Botswana, 2022. [Google Scholar]
- Temoso, O.; Hadley, D.; Villano, R. Performance Measurement of Extensive Beef Cattle Farms in Botswana. Agrekon 2015, 54, 87–112. [Google Scholar] [CrossRef]
- Batisani, N.; Yarnal, B. Rainfall variability and trends in semi-arid Botswana: Implications for climate change adaptation policy. Appl. Geogr. 2010, 30, 483–489. [Google Scholar] [CrossRef]
- Byakatonda, J.; Parida, B.P.; Kenabatho, P.K.; Moalafhi, D.B. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana. J. Earth Syst. Sci. 2018, 127, 25. [Google Scholar] [CrossRef]
- Statistics Botswana. Botswana Environment Statistics Climate Digest; Statistics Botswana: Gaborone, Botswana, 2019; Available online: www.statsbots.org.bw (accessed on 17 January 2024).
- Akinyemi, F.O. Climate Change and Variability in Semiarid Palapye, Eastern Botswana: An Assessment from Smallholder Farmers’ Perspective. Am. Meteorol. Soc. 2017, 9, 349–364. [Google Scholar] [CrossRef]
- Bosekeng, L.C.; Mogotsi, K.; Bosekeng, G. Farmers’ perception of climate change and variability in the North-East District of Botswana. Livest Res. Rural Dev. 2020, 32, 17. Available online: https://www.researchgate.net/publication/338571027 (accessed on 11 September 2023).
- Juana, J.; Makepe, P.; Kahaka, Z.; Juana, J.S.; Okurut, F.N.; Makepe, P.M. Climate change perceptions and adaptations for livestock farmers in Botswana. Int. J. Econ. Issues 2016, 9, 1–21. Available online: https://www.researchgate.net/publication/307931501 (accessed on 15 December 2023).
- Mogomotsi, P.K.; Sekelemani, A.; Mogomotsi, G.E.J. Climate change adaptation strategies of small-scale farmers in Ngamiland East, Botswana. Clim. Change 2020, 159, 441–460. [Google Scholar] [CrossRef]
- Mugari, E.; Masundire, H.; Bolaane, M. Adapting to climate change in semi-arid rural areas: A case of the Limpopo basin part of Botswana. Sustainability 2020, 12, 8292. [Google Scholar] [CrossRef]
- Kgosikoma, O.E.; Batisani, N. Livestock population dynamics and pastoral communities’ adaptation to rainfall variability in communal lands of Kgalagadi South, Botswana. Pastoralism 2014, 4, 19. [Google Scholar] [CrossRef]
- Masike, S.; Urich, P. Vulnerability of Traditional Beef Sector to Drought and the Challenges of Climate Change: The Case of Kgatleng District, Botswana; University of Botswana: Gaborone, Botswana, 2008; Volume 1, Available online: http://www.academicjournals.org/JGRP (accessed on 7 November 2023).
- Masike, S.; Urich, P. The Projected Cost of Climate Change to Livestock Water Supply and Implications in Kgatleng District, Botswana. World J. Agric. Sci. 2009, 5, 597–603. [Google Scholar]
- Binge, A.; Mshenga, P.; Kgosikoma, K. Production and marketing constraints of small stock farming: Evidence from LIMID and non-LIMID farmers in Boteti Sub-District, Botswana. J. Agribus. Rural. Dev. 2019, 3, 195–201. [Google Scholar] [CrossRef]
- Tsheko, R. Rainfall reliability, drought and flood vulnerability in Botswana. Water SA 2003, 29, 389–392. [Google Scholar] [CrossRef]
- Kashe, K.; Mogobe, O.; Kolawole, O.D. Dryland crop production in Botswana: Constraints and opportunities for smallholder arable farmers. In Smallholder Farmers and Farming Practices: Challenges and Prospects; Kolawole, T., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2019; pp. 1–34. Available online: https://www.researchgate.net/publication/338212708 (accessed on 12 January 2024).
- World Bank. Climate Change Overview: Country Summary—Botswana. 2023. Available online: https://climateknowledgeportal.worldbank.org/country/botswana (accessed on 22 April 2023).
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 April 2023).
- National Weather Service. Standardized Precipitation Index. Available online: https://www.weather.gov/hfospi_info (accessed on 25 June 2023).
- National Drought Mitigation Center. SPI Generator [Software]. University of Nebraska-Licoln. Published 2018. Available online: https://drought.unl.edu/Monitoring/SPI/SPIProgram.aspx (accessed on 24 June 2023).
- Ocampo-Díaz, S.; Rodríguez-Niño, N. An Introductory Review of a Structural VAR-X Estimation and Applications. Borradores Econ. 2011, 3, 479–508. [Google Scholar] [CrossRef]
- Sims, C.A. Macroeconomics and Reality. Econom. Soc. 1980, 48, 1–48. [Google Scholar] [CrossRef]
- Sun, S.; Lu, H.; Tsui, K.L.; Wang, S. Nonlinear vector auto-regression neural network for forecasting air passenger flow. J. Air Trans. Manag. 2019, 78, 54–62. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 3rd ed.; Thomson South-Western: Mason, OH, USA, 2006. [Google Scholar]
- Warsono, R.E.; Wamiliana, W.; Usman, M. Vector autoregressive with exogenous variable model and its application in modeling and forecasting energy data: Case study of PTBA and HRUM energy. Int. J. Energy Econ. Policy 2019, 9, 390–398. [Google Scholar] [CrossRef]
- Nicholson, W.B.; Matteson, D.S.; Bien, J. VARX-L: Structured Regularization for Large Vector Autoregressions with Exogenous Variables. Int. J. Forecast. 2017, 33, 627–651. [Google Scholar] [CrossRef]
- Brooks, C.; Tsolacos, S. Forecasting models of retail rents. Environ Plan A. 2000, 32, 1825–1839. [Google Scholar] [CrossRef]
- Cushman, D.O.; Zha, T. Identifying monetary policy in a small open economy under flexible exchange rates. J. Monet. Econ. 1997, 39, 433–448. [Google Scholar] [CrossRef]
- Nijs, V.R.; Srinivasan, S.; Pauwels, K. Retail-price drivers and retailer profits. Mark. Sci. 2007, 26, 473–487. [Google Scholar] [CrossRef]
- Wood, B.D. Presidential saber rattling and the economy. Am. J. Pol. Sci. 2009, 53, 695–709. [Google Scholar] [CrossRef]
- Fingleton, B. Spurious spatial regression: Some Monte Carlo results with a spatial unit root and spatial cointegration. J. Reg. Sci. 1999, 39, 1–19. [Google Scholar] [CrossRef]
- Li, G.; Qin, S.J.; Yuan, T. Nonstationarity and Cointegration Tests for Fault Detection of Dynamic Processes. IFAC Proc. Vol. 2014, 49, 10616–10621. [Google Scholar] [CrossRef]
- Warsame, A.A.; Sheik-Ali, I.A.; Hassan, A.A.; Sarkodie, S.A. Extreme climatic effects hamper livestock production in Somalia. Environ Sci. Pollut. Res. 2021, 29, 40755–40767. [Google Scholar] [CrossRef] [PubMed]
- Gianfreda, A.; Maranzano, P.; Parisio, L.; Pelagatti, M. Testing for integration and cointegration when time series are observed with noise. Econ. Model 2023, 125, 106352. [Google Scholar] [CrossRef]
- Agbenyo, S. The Effect of Mental Rehearsal and Imagery on Music Performance Anxiety among Junior High School Students. J. Adv. Res. Multidiscip. Stud. 2022, 2, 1–8. [Google Scholar] [CrossRef]
- Granger, C.W.J. Time Series Analysis, Cointegration, and Applications. Am. Econ. Rev. 2004, 94, 421–425. [Google Scholar] [CrossRef]
- Johansen, S. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica 1991, 59, 1551–1580. [Google Scholar] [CrossRef]
- Lütkepohl, H.; Saikkonen, P.; Trenkler, C. Maximum eigenvalue versus trace tests for the cointegrating rank of a VAR process. Econom. J. 2001, 4, 287–310. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q.; Peng, J.; Niu, H. Effects of Long-Term Cold Stress on Growth Performance, Behavior, Physiological Parameters, and Energy Metabolism in Growing Beef Cattle. Animals 2023, 13, 1619. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M. Understanding heat stress in beef cattle. Brazilian J. Anim. Sci. 2018, 47, e20160414. [Google Scholar] [CrossRef]
- Bunning, H.; Wall, E. The effects of weather on beef carcass and growth traits. Animal 2022, 16, 100657. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Sec. 2021, 28, 100488. [Google Scholar] [CrossRef] [PubMed]
- Dahl, G.E.; Tao, S.; Laporta, J. Heat Stress Impacts Immune Status in Cows across the Life Cycle. Front Vet. Sci. 2020, 7, 116. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, Y.; Zhang, Y.G.; Yin, L.Y.; Yan, S.C.; Zhao, Y.Z.; Shez, W.V. Research and application of a new multilevel fuzzy comprehensive evaluation method for cold stress in dairy cows. J. Dairy Sci. 2022, 105, 9137–9161. [Google Scholar] [CrossRef]
- Eygelaar, D.; Jori, F.; Mokopasetso, M.; Sibeko, K.P.; Collins, N.E.; Vorster, I. Tick-borne haemoparasites in African buffalo (Syncerus caffer) from two wildlife areas in Northern Botswana. Parasites Vectors 2015, 8, 26. [Google Scholar] [CrossRef]
- Gunathilaka, N.; Niroshana, D.; Amarasinghe, D.; Udayanga, L. Prevalence of Gastrointestinal Parasitic Infections and Assessment of Deworming Program among Cattle and Buffaloes in Gampaha District, Sri Lanka. Biomed. Res. Int. 2018, 2018, 3048373. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Busang, M. Prevalence of some gastrointestinal parasites of ruminants in southern Botswana. Botswana J. Agric. Appl. Sci. 2013, 9, 97–103. [Google Scholar]
- Johansson, T. Gastrointestinal Nematodes in Goats in Small Holder Flocks around Gaborone, Botswana; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2017. [Google Scholar]
- Samuel, S.; Dosio, A.; Mphale, K.; Faka, D.N.; Wiston, M. Comparison of multi-model ensembles of global and regional climate model projections for daily characteristics of precipitation over four major river basins in southern Africa. Part II: Future changes under 1.5 °C, 2.0 °C and 3.0 °C warming levels. Atmos. Res. 2023, 293, 106921. [Google Scholar] [CrossRef]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef]
- Afonso, N. Impact of Rainfall on East Coast Fever in Cattle at Ol Pejeta; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2022. [Google Scholar]
- Chepkwony, R.; Castagna, C.; Heitkönig, I.; Van Bommel, S.; Van Langevelde, F. Associations between monthly rainfall and mortality in cattle due to East Coast fever, anaplasmosis and babesiosis. Parasitology 2020, 147, 1743–1751. [Google Scholar] [CrossRef]
- Rossi, B.; Wang, Y. Vector autoregressive-based Granger causality test in the presence of instabilities. Stata. J. 2019, 19, 883–899. [Google Scholar] [CrossRef]
- Shojaie, A.; Fox, E.B. Granger Causality: A Review and Recent Advances. Annu. Rev. Stat. Appl. 2022, 9, 289–319. [Google Scholar] [CrossRef] [PubMed]
- Abdulhafedh, A. How to Detect and Remove Temporal Autocorrelation in Vehicular Crash Data. J. Trans. Technol. 2017, 7, 133–147. [Google Scholar] [CrossRef]
- Martin, I. On the Autocorrelation of the Stock Market. J. Financ. Econom. 2021, 19, 39–52. [Google Scholar] [CrossRef]
- Hernandez, H. Testing for Normality: What is the Best Method? ForsChem Res. Rep. 2021, 6, 1–38. [Google Scholar] [CrossRef]
- Khatun, N. Applications of Normality Test in Statistical Analysis. Open J. Stat. 2021, 11, 113–122. [Google Scholar] [CrossRef]
Variable | Abbreviation | Measurement | Data Source |
---|---|---|---|
Cattle Production | CP | Annual number of live animals | FAOSTAT |
Goat Production | GP | Annual number of live animals | FAOSTAT |
Annual Agricultural Land Area | AALA | Square kilometers (sq2 km) | World Bank |
Annual Maximum Surface Air Temperature | AMASAT | Degrees Celsius (°C) | World Bank |
Annual Minimum Surface Air Temperature | AMISAT | Degrees Celsius (°C) | World Bank |
Dry year (SPI value < −1) | DY | DY Dummy (1—Yes, 0—Otherwise) | Author’s computation |
Wet year (SPI value > 1) | WY | WY Dummy (1—Yes, 0—Otherwise) | Author’s computation |
Variables | Cattle Production (CP) | Goat Production (GP) | ||||
---|---|---|---|---|---|---|
Coefficient | Std. Err. | p-Value | Coefficient | Std. Err. | p-Value | |
CP L1 | 1.147 | 0.140 | 0.00 *** | |||
CP L2 | −0.309 | 0.206 | 0.13 | |||
CP L3 | 0.042 | 0.134 | 0.75 | |||
GP L1 | 0.886 | 0.048 | 0.00 *** | |||
AALA L1 | 93.697 | 58.230 | 0.11 | 0.088 | 0.044 | 0.05 ** |
AALA L2 | −113.877 | 60.717 | 0.06 * | |||
AALA L3 | −23.789 | 55.783 | 0.67 | |||
AMISAT | −167,364.9 | 82,533.9 | 0.04 ** | 309.889 | 73.688 | 0.00 *** |
AMASAT | −44,806.8 | 22,429.7 | 0.05 ** | −102.965 | 20.609 | 0.00 *** |
WY | −131,144.4 | 65,697.9 | 0.05 ** | |||
DY | −203.386 | 73.421 | 0.01 *** | |||
_cons | 15,300,000 | 13,300,000 | 0.25 | −23,749.9 | 12,140.42 | 0.05 ** |
R-squared | 0.8953 | 0.9175 |
Lag | Cattle Production | Goat Production | ||||||
---|---|---|---|---|---|---|---|---|
LRE * Stat | Df | Rao F-Stat | p-Value | LRE * Stat | Df | Rao F-Stat | p-Value | |
1 | 5.41 | 4 | 1.385 | 0.24 | 2.88 | 4 | 0.724 | 0.58 |
2 | 0.18 | 4 | 0.044 | 0.99 | ||||
3 | 5.06 | 4 | 1.293 | 0.28 |
Variables | Granger Causality | F-Statistics | p-Value | Direction of Causality |
---|---|---|---|---|
Cattle production (Lag 3) | AALA does not Granger Cause CP | 2.922 | 0.05 ** | Bidirectional |
CP does not Granger Cause AALA | 3.196 | 0.03 ** | ||
AMASAT does not Granger Cause CP | 2.547 | 0.07 * | Unidirectional | |
CP does not Granger Cause AMASAT | 0.981 | 0.41 | ||
AMISAT does not Granger Cause CP | 1.850 | 0.15 | No causality | |
CP does not Granger Cause AMISAT | 1.996 | 0.13 | ||
WY does not Granger Cause CP | 2.546 | 0.07 * | Unidirectional | |
CP does not Granger Cause WY | 1.534 | 0.22 | ||
Goat production (Lag 1) | AALA does not Granger Cause GP | 6.393 | 0.05 ** | Unidirectional |
GP does not Granger Cause AALA | 0.933 | 0.34 | ||
AMASAT does not Granger Cause GP | 0.758 | 0.39 | No causality | |
GP does not Granger Cause AMASAT | 1.608 | 0.21 | ||
AMISAT does not Granger Cause GP | 2.636 | 0.10 * | Unidirectional | |
GP does not Granger Cause AMISAT | 0.058 | 0.13 | ||
DY does not Granger Cause GP | 0.003 | 0.96 | No causality | |
GP does not Granger Cause DY | 0.019 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matopote, G.; Joshi, N.P. Associations between Climate Variability and Livestock Production in Botswana: A Vector Autoregression with Exogenous Variables (VARX) Analysis. Atmosphere 2024, 15, 363. https://doi.org/10.3390/atmos15030363
Matopote G, Joshi NP. Associations between Climate Variability and Livestock Production in Botswana: A Vector Autoregression with Exogenous Variables (VARX) Analysis. Atmosphere. 2024; 15(3):363. https://doi.org/10.3390/atmos15030363
Chicago/Turabian StyleMatopote, Given, and Niraj Prakash Joshi. 2024. "Associations between Climate Variability and Livestock Production in Botswana: A Vector Autoregression with Exogenous Variables (VARX) Analysis" Atmosphere 15, no. 3: 363. https://doi.org/10.3390/atmos15030363
APA StyleMatopote, G., & Joshi, N. P. (2024). Associations between Climate Variability and Livestock Production in Botswana: A Vector Autoregression with Exogenous Variables (VARX) Analysis. Atmosphere, 15(3), 363. https://doi.org/10.3390/atmos15030363