Sensitivity Analysis of Modelled Air Pollutant Distribution around Buildings under Different Meteorological Conditions
Abstract
:1. Introduction
2. Data and Methods
2.1. Sofia: Primary Air Quality Issues
2.2. GRAMM/GRAL Model System
2.3. Modelling Set-Up
2.3.1. Modelling Domain
2.3.2. Calculation of Traffic Emissions
2.3.3. Numerical Experiments and Meteorological Set-Up
Meteorological Set-Up for the ‘Test Cases’
Meteorological Set-Up for the ‘Real Case’
3. Results
3.1. Pollution Distribution Sensitivity to ‘Test Cases’ Meteorological Setup
3.1.1. ‘Case 1’ Results
3.1.2. ‘Case 2’ Results
3.1.3. Stability Class Modifications by GRAMM
3.1.4. Other Cases: ‘Case 3’, ‘Case 4’, and ‘Case 5’
3.2. Pollution Distribution in Real Meteorological Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gill, S.S.; Wu, H.; Patros, P.; Ottaviani, C.; Arora, P.; Pujol, V.C.; Haunschild, D.; Parlikad, A.K.; Cetinkaya, O.; Lutfiyya, H.; et al. Modern computing: Vision and challenges. Telemat. Inform. Rep. 2024, 13, 100116. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Blocken, B. Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build. Environ. 2015, 91, 219–245. [Google Scholar] [CrossRef]
- Bouris, D.; Triantafyllou, A.G.; Krestou, A.; Leivaditou, E.; Skordas, J.; Konstantinidis, E.; Kopanidis, A.; Wang, Q. Urban-Scale Computational Fluid Dynamics Simulations with Boundary Conditions from Similarity Theory and a Mesoscale Model. Energies 2021, 14, 5624. [Google Scholar] [CrossRef]
- Blocken, B.; Tominaga, Y.; Stathopoulos, T. CFD simulation of micro-scale pollutant dispersion in the built environment. Build. Environ. 2013, 64, 225–230. [Google Scholar] [CrossRef]
- Lateb, M.; Meroney, R.N.; Yataghene, M.; Fellouah, H.; Saleh, F.; Boufadel, M.C. On the use of numerical modelling for near-field pollutant dispersion in urban environments. A review. Environ. Pollut. 2016, 208, 271–283. [Google Scholar] [CrossRef]
- Li, Z.; Ming, T.; Liu, S.; Peng, C.; Richter, R.; Li, W.; Zhang, H.; Wen, C.Y. Review on pollutant dispersion in urban areas-part A: Effects of mechanical factors and urban morphology. Build. Environ. 2021, 190, 107534. [Google Scholar] [CrossRef]
- Coceal, O.; Goulart, E.V.; Branford, S.; Thomas, T.G.; Belcher, S.E. Flow structure and near-field dispersion in arrays of building-like obstacles. J. Wind Eng. Ind. Aerodyn. 2014, 125, 52–68. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Buccolieri, R.; Salizzoni, P. Recent advancements in numerical modelling of flow and dispersion in urban areas: A short review. Int. J. Environ. Pollut. 2013, 52, 172–191. [Google Scholar] [CrossRef]
- Bellasio, R. Modelling traffic air pollution in road tunnels. Atmos. Environ. 1997, 31, 1539–1551. [Google Scholar] [CrossRef]
- Berkowicz, R. OSPM—A Parameterised Street Pollution Model. Environ. Monit. Assess. 2000, 65, 323–331. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Fisher, B.E.A.; Pericleous, K.; Gonzalez-Flesca, N. Modelling air quality in street canyons: A review. Atmos. Environ. 2003, 37, 155–182. [Google Scholar] [CrossRef]
- Fu, X.; Liu, J.; Ban-Weiss, G.A.; Zhang, J.; Huang, X.; Ouyang, B.; Popoola, O.; Tao, S. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model. Atmos. Environ. 2017, 165, 111–121. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, X.; Wang, S.; He, X.; Dong, L.; Zhang, N.; Wang, H.; Wang, Z.; Ma, Y.; Wang, L.; et al. Large-eddy simulation of traffic-related air pollution at a very high resolution in a mega-city: Evaluation against mobile sensors and insights for influencing factors. Atmos. Chem. Phys. 2021, 21, 2917–2929. [Google Scholar] [CrossRef]
- Berkowicz, R.; Hertel, O.; Larsen, S.E.; Sørensen, N.N.; Nielsen, M. Modelling Traffic Pollution in Streets; National Environmental Research Institute: Roskilde, Denmark, 1997. [Google Scholar]
- Kakosimos, K.E.; Hertel, O.; Ketzel, M.; Berkowicz, R. Operational Street Pollution Model (OSPM)—a review of performed application and validation studies, and future prospects. Environ. Chem. 2010, 7, 485–503. [Google Scholar] [CrossRef]
- Stocker, J.; Hood, C.; Carruthers, D.; McHugh, C. ADMS-Urban: Developments in modelling dispersion from the city scale to the local scale. Int. J. Environ. Pollut. 2012, 50, 308–316. [Google Scholar] [CrossRef]
- Oettl, D. Documentation of the Lagrangian Particle Model GRAL (Graz Lagrangian Model) Vs. 19.01; Government of Styria Department 15 Energy, Housing, Technology, Air Quality Control: Graz, Austria, 2019. [Google Scholar]
- Tinarelli, G.; Mortarini, L.; Trini Castelli, S.; Carlino, G.; Moussafir, J.; Olry, C.; Armand, P.; Anfossi, D. Review and Validation of MicroSpray, a Lagrangian Particle Model of Turbulent Dispersion. In Lagrangian Modeling of the Atmosphere; Geophysical Monograph Series; Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., Webley, P., Eds.; American Geophysical Union: Washington, DC, USA, 2012; pp. 311–328. [Google Scholar] [CrossRef]
- Barbero, D.; Tinarelli, G.; Silibello, C.; Nanni, A.; Gariazzo, C.; Stafoggia, M.; Viegi, G. A microscale hybrid modelling system to assess the air quality over a large portion of a large European city. Atmos. Environ. 2021, 264, 118656. [Google Scholar] [CrossRef]
- Denby, B.R.; Gauss, M.; Wind, P.; Mu, Q.; Grøtting Wærsted, E.; Fagerli, H.; Valdebenito, A.; Klein, H. Description of the uEMEP_v5 downscaling approach for the EMEP MSC-W chemistry transport model. Geosci. Model Dev. 2020, 13, 6303–6323. [Google Scholar] [CrossRef]
- Sanchez, B.; Santiago, J.L.; Martilli, A.; Martin, F.; Borge, R.; Quaassdorff, C.; de la Paz, D. Modelling NOx concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model. Atmos. Environ. 2017, 163, 155–165. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmos. Environ. 2013, 79, 716–730. [Google Scholar] [CrossRef]
- Gousseau, P.; Blocken, B.; Stathopoulos, T.; Van Heijst, G.J.F. Near-field pollutant dispersion in an actual urban area: Analysis of the mass transport mechanism by high-resolution Large Eddy Simulations. Comput. Fluids 2015, 114, 151–162. [Google Scholar] [CrossRef]
- Pantusheva, M.; Mitkov, R.; Hristov, P.O.; Petrova-Antonova, D. Air Pollution Dispersion Modelling in Urban Environment Using CFD: A Systematic Review. Atmosphere 2022, 13, 1640. [Google Scholar] [CrossRef]
- Wang, A.; Fallah-Shorshani, M.; Xu, J.; Hatzopoulou, M. Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements. Atmos. Environ. 2016, 142, 452–464. [Google Scholar] [CrossRef]
- Martín, F.; Janssen, S.; Rodrigues, V.; Sousa, J.; Santiago, J.L.; Rivas, E.; Stocker, J.; Jackson, R.; Russo, F.; Villani, M.G.; et al. Using dispersion models at micro-scale to assess long-term air pollution in urban hot spots: A FAIRMODE joint intercomparison exercise for a case study in Antwerp. Sci. Total Environ. 2024, 925, 171761. [Google Scholar] [CrossRef] [PubMed]
- Tewari, M.; Kusaka, H.; Chen, F.; Coirier, W.J.; Kim, S.; Wyszogrodzki, A.A.; Warner, T.T. Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmos. Res. 2010, 96, 656–664. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Purohit, V.; Matli, C.; Biniwale, R. Improving accuracy in simulation of urban wind flows by dynamic downscaling WRF with OpenFOAM. Urban Clim. 2021, 38, 100912. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; You, R. Evaluating a combined WRF and CityFFD method for calculating urban wind distributions. Build. Environ. 2023, 234, 110205. [Google Scholar] [CrossRef]
- Oettl, D. A multiscale modelling methodology applicable for regulatory purposes taking into account effects of complex terrain and buildings on pollutant dispersion: A case study for an inner Alpine basin. Environ. Sci. Pollut. Res. 2015, 22, 17860–17875. [Google Scholar] [CrossRef] [PubMed]
- Almbauer, R.A.; Oettl, D.; Bacher, M.; Sturm, P.J. Simulation of the air quality during a field study for the city of Graz. Atmos. Environ. 2000, 34, 4581–4594. [Google Scholar] [CrossRef]
- Berchet, A.; Zink, K.; Muller, C.; Oettl, D.; Brunner, J.; Emmenegger, L.; Brunner, D. A cost-effective method for simulating city-wide air flow and pollutant dispersion at building resolving scale. Atmos. Environ. 2017, 158, 181–196. [Google Scholar] [CrossRef]
- AAQD, 2008: Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 15 May 2024).
- Syrakov, D.; Prodanova, M.; Slavov, K.; Etropolska, I.; Ganev, K.; Miloshev, N.; Ljubenov, T. Bulgarian System for Air Pollution Forecast. J. Intern. Sci. Publ. Ecol. Saf. 2013, 7, 325–334. [Google Scholar]
- Syrakov, D.; Etropolska, I.; Prodanova, M.; Slavov, K.; Ganev, K.; Miloshev, N.; Ljubenov, T. Downscaling of Bulgarian chemical weather forecast from Bulgaria region to Sofia city. AIP Conf. Proc. 2013, 1561, 120–132. [Google Scholar] [CrossRef]
- Atanassov, D.; Spassova, S.; Grancharova, D.; Krastev, S.; Yankova, T.; Nikolov, L.; Chakarova, M.; Krasteva, P.; Genov, N.; Stamenov, J.; et al. Air Pollution Monitoring and Modeling System of the Town of Plovdiv (phase I). J. Environ. Prot. Ecol. 2006, 7, 260–268. [Google Scholar]
- Dimitrova, R.; Velizarova, M. Assessment of the Contribution of Different Particulate Matter Sources on Pollution in Sofia City. Atmosphere 2021, 12, 423. [Google Scholar] [CrossRef]
- Sofia Municipality AQ Plan, 2021 Comprehensive Programme for Improvement of Ambient Air Quality of Sofia Municipality for the Period 2021–2026. (In Bulgarian). Available online: https://www.sofia.bg/en/components-environment-air (accessed on 15 May 2024).
- Petrov, A. Evaluation of OpenFOAM against CODASC wind tunnel database and impact of heating on the flow in an idealised street canyon. Int. J. Environ. Pollut. 2019, 65, 149–163. [Google Scholar] [CrossRef]
- Petrov, A.; Georgieva, E. An Urban Air Pollution Modelling Test: GRAL vs. CUTE-1 case. AIP Conf. Proc. 2019, 2075, 120007. [Google Scholar] [CrossRef]
- Baumann-Stanzer, K.; Andronopoulos, S.; Armand, P.; Berbekar, E.; Efthimiou, G.; Fuka, V.; Gariazzo, C.; Gasparac, G.; Harms, F.; Hellsten, A.; et al. COST ES1006-Model Evaluation Case Studies: Approach and Results; COST Office: Brussels, Belgium, 2015; ISBN 987-3-9817334-2-6. [Google Scholar]
- White Paper on the Introduction and Effective Operation of Low-Emission Zones for Motor Vehicles on the Territory of the Metropolitan Municipality. 2022. (In Bulgarian). Available online: https://innoair-sofia.eu/images/documents/documents-bg/04_2_1_White_Book_V4_m.pdf (accessed on 15 May 2024).
- Lee, K.; Bernard, Y.; Dallmann, T.; Broun, C.; Miller, J. Impact of introducing LEZ in Sofia, Report by International Council on Clean Transportation. 2021. (In Bulgarian). Available online: https://theicct.org/publication/impacts-of-a-low-emission-zone-in-sofia/ (accessed on 15 May 2024).
- WHO, 2021: World Health Organization Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, World Health Organization. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 15 May 2024). License: CC BY-NC-SA 3.0 IGO.
- Oettl, D. Documentation of the Prognostic Mesoscale Model GRAMM (Graz Mesoscale Model) Version 20.1; Amt d. Stmk. Landesregierung, ABT15, Referat Luftreinhaltung: Graz, Austria, 2020; p. 125. [Google Scholar]
- Pasquill, F. The estimation of the dispersion of windborne material. Meteorol. Mag. 1961, 90, 33–49. [Google Scholar]
- Gifford, F.A. Turbulent diffusion-typing schemes: A review. Nucl. Saf. 1976, 17, 68–86. [Google Scholar]
- Kurz, C.; Orthofer, R.; Sturm, P.; Kaiser, A.; Uhrner, U.; Reifeltshammer, R.; Rexeis, M. Projection of the air quality in Vienna between 2005 and 2020 for NO2 and PM10. Urban Clim. 2014, 10, 703–719. [Google Scholar] [CrossRef]
- Demetriou, E.; Hadjistassou, C. Lowering mortality risks in urban areas by containing atmospheric pollution. Environ. Res. 2022, 211, 113096. [Google Scholar] [CrossRef]
- Fabbi, S.; Asaro, S.; Bigi, A.; Teggi, S.; Ghermandi, G. Impact of vehicular emissions in an urban area of the Po valley by microscale simulation with the GRAL dispersion model. IOP Conf. Ser. Earth Environ. Sci. 2019, 296, 012006. [Google Scholar] [CrossRef]
- OpenCFD; OpenFOAM. The Open Source Computational Fluid Dynamics (CFD) Toolbox. 2008. Available online: https://www.opencfd.co.uk/openfoam/ (accessed on 15 May 2024).
- GRAL GUI Manual. Available online: https://gral.tugraz.at/download/documentations/ (accessed on 15 May 2024).
- INNOAIR Project. Available online: https://innoair-sofia.eu/en/ (accessed on 15 May 2024).
- Open Data Portal, Ministry of Interior, Topic Transport, Registered Vehicles as of 01.01.2024. Available online: https://data.egov.bg/data/view/619c72a7-fe9d-432a-8fe8-8e034b90fb9c?rpage=1 (accessed on 15 May 2024).
- EMEP/EEA Air Pollutant Emission Inventory Guidebook, Technical Guidance to Prepare National Emission Inventories, European Environment Agency, Denmark. 2023. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2023 (accessed on 15 May 2024).
- Murakami, S.; Mochida, A.; Hayashi, Y.; Hibi, K. Numerical simulation of velocity field and diffusion field in an urban area. Energy Build. 1991, 15, 345–356. [Google Scholar] [CrossRef]
- Blocken, B.; Stathopoulos, T.; Carmeliet, J.; Hensen, J.L.M. Application of computational fluid dynamics in building performance simulation for the outdoor environment: An overview. J. Build. Perform. Simul. 2011, 4, 157–184. [Google Scholar] [CrossRef]
- Jeanjean, A.P.R.; Hinchliffe, G.; McMullan, W.A.; Monks, P.S.; Leigh, R.J. A CFD study on the effectiveness of trees to disperse road traffic emissions at a city scale. Atmos. Environ. 2015, 120, 1–14. [Google Scholar] [CrossRef]
- Atanassov, D.; Petrov, A.; Kirova-Galabova, H.; Maneva-Petrova, V.; Neykova, N.; Hristova, E.; Neykova, R.; Tsenova, B. Development of Possible Scenarios on Cultural Shift in Transportation on Air Quality, INNOAIR Report. 2022. Available online: https://innoair-sofia.eu/images/documents/documents-bg/D_6_4_3_Scenarios_pu.pdf (accessed on 15 May 2024).
- Atanassov, D.; Petrov, A.; Kirova-Galabova, H.; Maneva-Petrova, V.; Neykova, R.; Tsenova, B.; Neykova, N.; Kolarova, M.; Nikolov, V.; Velchev, K. Effect of Cultural Shift in Transport on Air Quality, INNOAIR Report. 2023. Available online: https://innoair-sofia.eu/images/documents/documents-bg/D6_4_4_Effect_p.pdf (accessed on 15 May 2024).
- Dzhambov, A.M.; Dimitrova, V.; Germanova, N.; Burov, A.; Brezov, D.; Hlebarov, I.; Dimitrova, R. Joint Associations and Path-ways from Greenspace, Traffic-Related Air Pollution, and Noise to Poor Self-Rated General Health: A Population-Based Study in Sofia, Bulgaria. Environ. Res. 2023, 231, 116087. [Google Scholar] [CrossRef] [PubMed]
- Oettl, D. High resolution maps of nitrogen dioxide for the Province of Styria, Austria. Int. J. Environ. Pollut. 2014, 54, 137–146. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Guo, D.; Wang, D.; Pan, Y.; Zhang, J.; Yao, R. Numerical Investigation of the Impact of Tall Buildings on Pollutant Dispersion during Stable Stratification. Atmosphere 2024, 15, 16. [Google Scholar] [CrossRef]
Parameter | GRAMM | GRAL |
---|---|---|
Terrain elevation range, m | 565–611 | Inherited from GRAMM |
Domain size (x, y), m | 1440 1410 | 1000 1000 |
Horizontal cell size, m | 30 | 2 |
Number of cells in the E-W direction | 48 | 500 |
Number of cells in the N-S direction | 47 | 500 |
Number of vertical levels | 12 | 50 |
Thickness of the first level, m | 10 | 2 |
Vertical stretching factor | 1.4 | 1.02 |
Vehicle Type | Total Traffic for 24 h | Mean Hourly Traffic for 24 h | Total Traffic for Peak Hours | Mean Hourly Peak Traffic |
---|---|---|---|---|
Cars (petrol) | 21,376 | 890 | 13,773 | 1574 |
Cars (diesel) | 29,070 | 1211 | 18,726 | 2140 |
Buses | 541 | 22 | 313 | 35 |
LCV, MCV, and HCV | 6606 | 275 | 4260 | 486 |
Total | 57,593 | 2398 | 37,072 | 4235 |
Vehicles | Emission Rate (kg h−1 km−1) | |||||
---|---|---|---|---|---|---|
Type | Count per Hour (Peak Mean) | CO | NMVOC | NOX | PM | BC |
Cars (petrol) | 1574 | 7.2514 | 0.8604 | 0.7474 | 0.0026 | 0.0003 |
Cars (diesel) | 2140 | 0.3322 | 0.0698 | 1.2930 | 0.1097 | 0.0626 |
Buses | 35 | 0.0224 | 0.0049 | 0.0549 | 0.0043 | 0.0023 |
Trucks | 486 | 0.3052 | 0.0660 | 0.0581 | 0.7474 | 0.0310 |
Total | 4235 | 7.9112 | 1.0011 | 2.1535 | 0.8640 | 0.0962 |
Test Case | Wind Direction | Wind Speed | PG Stability Class |
---|---|---|---|
Case 1 | --- | 0 m s−1 | 1, 4, and 7 |
Case 2 | NW (315°) | 3 m s−1, 7 m s−1 | 1, 4, and 7 |
Case 3 | SE (135°) | 3 m s−1, 7 m s−1 | 1, 4, and 7 |
Case 4 | NE (45°) | 3 m s−1, 7 m s−1 | 1, 4, and 7 |
Case 5 | SW (225°) | 3 m s−1, 7 m s−1 | 1, 4, and 7 |
Stability Class | Wind Direction | NW (315°) (‘Case 2’) | SE (135°) (‘Case 3’) | SW (225°) (‘Case 5’) | NE (45°) (‘Case 4’) | Calm Conditions (‘Case 1’) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Wind Speed | 3 m s−1 | 7 m s−1 | 3 m s−1 | 7 m s−1 | 3 m s−1 | 7 m s−1 | 3 m s−1 | 7 m s−1 | ||
Strongly unstable (SC = 1) | 223.9 | 101.6 | 181.2 | 81.3 | 244.0 | 90.4 | 168.8 | 75.4 | 418.6 | |
Neutral (SC = 4) | 340.7 | 139.4 | 216.8 | 91.3 | 217.6 | 256.8 | 206.3 | 186.3 | 710.0 | |
Strongly stable (SC = 7) | 107.6 | 73.3 | 106.3 | 61.6 | 216.2 | 177.8 | 241.4 | 309.1 | 701.1 |
FB | NMSE | R | FAC2 (%) | FAC5 (%) |
---|---|---|---|---|
−0.003 | 3.652 | 0.069 | 21.4 | 57.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, A.; Georgieva, E.; Hristova, E. Sensitivity Analysis of Modelled Air Pollutant Distribution around Buildings under Different Meteorological Conditions. Atmosphere 2024, 15, 638. https://doi.org/10.3390/atmos15060638
Petrov A, Georgieva E, Hristova E. Sensitivity Analysis of Modelled Air Pollutant Distribution around Buildings under Different Meteorological Conditions. Atmosphere. 2024; 15(6):638. https://doi.org/10.3390/atmos15060638
Chicago/Turabian StylePetrov, Anton, Emilia Georgieva, and Elena Hristova. 2024. "Sensitivity Analysis of Modelled Air Pollutant Distribution around Buildings under Different Meteorological Conditions" Atmosphere 15, no. 6: 638. https://doi.org/10.3390/atmos15060638
APA StylePetrov, A., Georgieva, E., & Hristova, E. (2024). Sensitivity Analysis of Modelled Air Pollutant Distribution around Buildings under Different Meteorological Conditions. Atmosphere, 15(6), 638. https://doi.org/10.3390/atmos15060638