Spatiotemporal Exposure Assessment of PM2.5 Concentration Using a Sensor-Based Air Monitoring System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Area and Locations of SAMIs and AQMSs
2.2. PM2.5 Concentration Measurement
2.3. Spatial Interpolation
2.4. Model Evaluation via Spatial Analysis
3. Results
3.1. PM2.5 Concentrations According to the Models
3.2. Verification between Estimation and Observation
3.3. Comparison by SAMIs According to Distance from the AQMSs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. New WHO Global Air Quality Guidelines Aim to Save Millions of Lives from Air Pollution. Copenhagen and Geneva: World Health Organization. 2021. Available online: https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution (accessed on 4 December 2023).
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths. PR 221—IARC: Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths (who.int). 2013. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf (accessed on 22 September 2023).
- Choe, J.; Lee, Y. A study on the impact of PM2.5 emissions on respiratory diseases. J. Environ. 2015, 23, 155–172. [Google Scholar] [CrossRef]
- Siregar, S.; Idiawati, N.; Pan, W.C.; Yu, K.P. Association between satellite-based estimates of long-term PM2.5 exposure and cardiovascular disease: Evidence from the Indonesian Family Life Survey. Environ. Sci. Pollut. Res. 2022, 29, 21156–21165. [Google Scholar] [CrossRef] [PubMed]
- Slawsky, E.; Ward-Caviness, C.K.; Neas, L.; Devlin, R.B.; Cascio, W.E.; Russell, A.G.; Huang, R.; Kraus, W.E.; Hauser, E.; Diaz-Sanchez, D.; et al. Evaluation of PM2.5 air pollution sources and cardiovascular health. Environ. Epidemiol. 2021, 5, e157. [Google Scholar] [CrossRef] [PubMed]
- Suryadhi, M.A.H.; Suryadhi, P.A.R.; Abudureyimu, K.; Ruma, I.M.W.; Calliope, A.S.; Wirawan, D.N.; Yorifuji, T. Exposure to particulate matter (PM2.5) and prevalence of diabetes mellitus in Indonesia. Environ. Int. 2020, 140, 105603. [Google Scholar] [CrossRef] [PubMed]
- Gulia, S.; Prasad, P.; Goyal, S.K.; Kumar, R. Sensor-based Wireless Air Quality Monitoring Network (SWAQMN)—A smart tool for urban air quality management. Atmos. Pollut. Res. 2020, 9, 1588–1597. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Taştan, M.; Gökozan, H. Real-time monitoring of indoor air quality with internet of things-based e-nose. Appl. Sci. 2019, 9, 3435. [Google Scholar] [CrossRef]
- Snyder, E.; Watkins, T.; Solomon, P.; Thoma, E.; Williams, R.; Hagler, G.; Shelow, D.; Hindin, D.; Kilaru, V.; Preuss, P. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Bi, J.; Carmona, N.; Blanco, M.N.; Gassett, A.J.; Seto, E.; Szpiro, A.A.; Larson, T.V.; Sampson, P.D.; Kaufman, J.D.; Sheppard, L. Publicly available low-cost sensor measurements for PM2.5 exposure modeling: Guidance for monitor deployment and data selection. Environ. Int. 2022, 158, 106897. [Google Scholar] [CrossRef]
- Dubey, R.; Patra, A.K.; Joshi, J.; Blankenberg, D.; Kolluru, S.S.R.; Madhu, B.; Raval, S. Evaluation of low-cost particulate matter sensors OPC N2 and PM Nova for aerosol monitoring. Atmos. Pollut. Res. 2022, 13, 101335. [Google Scholar] [CrossRef]
- Hofman, J.; Nikolaou, M.; Shantharam, S.P.; Stroobants, C.; Weijs, S.; Manna, V.P.L. Distant calibration of low-cost PM and NO2 sensors; evidence from multiple sensor testbeds. Atmos. Pollut. Res. 2022, 13, 101246. [Google Scholar] [CrossRef]
- Lai, W.I.; Chen, Y.Y.; Sun, J.H. Ensemble machine learning model for accurate air pollution detection using commercial gas sensors. Sensors 2022, 22, 4393. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Kim, B. A decision-making model for adopting a cloud computing system. Sustainability 2018, 10, 2952. [Google Scholar] [CrossRef]
- Park, J.; Ryu, H.; Kim, E.; Choe, Y.; Heo, J.; Lee, J.; Cho, S.; Sung, K.; Cho, M.; Yang, W. Assessment of PM2.5 population exposure of a community using sensor-based air monitoring instruments and similar time-activity groups. Atmos. Pollut. Res. 2020, 11, 1971–1981. [Google Scholar] [CrossRef]
- Frigge, M.; Hoaglin, D.; Iglewicz, B. Some implementations of the boxplot. Am. Stat. 1989, 43, 50–54. [Google Scholar] [CrossRef]
- Do, K.; Yu, H.; Velasquez, J.; Grell-Brisk, M.; Smith, H.; Elvey, C. A data-driven approach for characterizing community scale air pollution exposure disparities in inland Southern California. J. Aerosol. Sci. 2021, 152, 105704. [Google Scholar] [CrossRef]
- Alimissis, A.; Philippopoulos, K.; Deligiorgi, D. Spatial estimation of urban air pollution with the use of artificial neural network models. Atmos. Environ. 2018, 191, 205–213. [Google Scholar] [CrossRef]
- Ahmed, S.O.; Mazloum, R.; Abou-Ali, H. Spatiotemporal interpolation of air pollutant in the Greater Cairo and the Delta, Egypt. Environ. Res. 2018, 160, 27–34. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, R.K.; Sarma, K. Mapping spatial distribution of traffic induced criteria pollutants and associated health risks using kriging interpolation tool in Delhi. J. Transp. Health 2020, 18, 100879. [Google Scholar] [CrossRef]
- Kang, D.; Bong, C.; Kim, D. Real-time high resolution PM monitoring in Seoul. Korean Assoc. Part. Aerosol. Res. 2019, 15, 67–78. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Husain, T.; Khan, A.; Huang, Z. Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance. PLoS ONE 2014, 9, e96111. [Google Scholar] [CrossRef]
- Wei, P.; Zhang, Y.; Meng, C. Spatial estimation of regional PM2.5 concentrations with GWR models using PCA and RBF interpolation optimization. Remote Sens. 2022, 14, 5626. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the performance of low-cost sensors for air quality monitoring. Atmos 2019, 10, 506. [Google Scholar] [CrossRef]
- Washington State Department of Ecology. Air Monitoring Site Selection and Installation Procedure. 2019. Available online: https://fortress.wa.gov/ecy/publications/summarypages/1602021.html (accessed on 20 May 2024).
- Freenstra, B.; Papapostolou, V.; Hasheminassab, S.; Zhang, H.; Boghossian, B.D.; Cocker, D.; Polidori, A. Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring sites. Atmos. Environ. 2019, 216, 116946. [Google Scholar] [CrossRef]
- Tagle, M.; Rojas, F.; Reyes, F.; Vásquez, Y.; Hallgren, F.; Lindén, J.; Kolev, D.; Wante, Å.K. Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile. Environ. Monit. Assess. 2020, 192, 171. [Google Scholar] [CrossRef]
- Kim, S.; Sheppard, L.; Kim, H. Health effects of long-term air pollution influence of exposure prediction methods. Epidemiology 2009, 20, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yi, S.; Eum, Y.; Choi, H.; Shin, H.; Ryou, H.; Kim, H. Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities. Environ. Health Toxicol. 2014, 29, 12.1–12.8. [Google Scholar] [CrossRef]
- Considine, E.M.; Reid, C.E.; Ogletree, M.R.; Dye, T. Improving accuracy of air pollution exposure measurements: Statistical correction of a municipal low-cost airborne particulate matter sensor network. Environ. Pollut. 2021, 268, 115833. [Google Scholar] [CrossRef]
- Korean Ministry of Environment. Air Pollution Monitoring Network Installation and Operation Instructions. 2018. Available online: http://27.101.216.209/home/file/readFile.do;jsessionid=oUUJ9jiVXZOLQdODyJXiPkT9.mehome1?fileId=222422&fileSeq=3 (accessed on 11 September 2023).
Interpolation | Validation | Model | |||
---|---|---|---|---|---|
Model 1 (n = 48) | Model 2 (n = 49) | Model 3 (n = 49) | Model 4 (n = 49) | ||
Inverse Distance Weighted (IDW) | R2 * | 0.66 | 0.63 | 0.94 | 0.93 |
RMSE ** | 45.0 | 35.5 | 17.2 | 19.0 | |
MAE *** | 34.0 | 22.6 | 11.5 | 12.7 | |
Ordinary Kriging (OK) | R2 | 0.66 | 0.66 | 0.95 | 0.95 |
RMSE | 45.0 | 34.6 | 13.6 | 13.9 | |
MAE | 34.0 | 22.1 | 8.9 | 9.1 | |
Universal Kriging (UK) | R2 | 0.66 | 0.63 | 0.95 | 0.95 |
RMSE | 45.0 | 34.9 | 13.6 | 13.9 | |
MAE | 34.0 | 22.3 | 8.9 | 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Woo, J.; Choe, Y.; Min, G.; Kim, D.; Kim, D.; Lee, S.; Yang, W. Spatiotemporal Exposure Assessment of PM2.5 Concentration Using a Sensor-Based Air Monitoring System. Atmosphere 2024, 15, 664. https://doi.org/10.3390/atmos15060664
Shin J, Woo J, Choe Y, Min G, Kim D, Kim D, Lee S, Yang W. Spatiotemporal Exposure Assessment of PM2.5 Concentration Using a Sensor-Based Air Monitoring System. Atmosphere. 2024; 15(6):664. https://doi.org/10.3390/atmos15060664
Chicago/Turabian StyleShin, Jihun, Jaemin Woo, Youngtae Choe, Gihong Min, Dongjun Kim, Daehwan Kim, Sanghoon Lee, and Wonho Yang. 2024. "Spatiotemporal Exposure Assessment of PM2.5 Concentration Using a Sensor-Based Air Monitoring System" Atmosphere 15, no. 6: 664. https://doi.org/10.3390/atmos15060664
APA StyleShin, J., Woo, J., Choe, Y., Min, G., Kim, D., Kim, D., Lee, S., & Yang, W. (2024). Spatiotemporal Exposure Assessment of PM2.5 Concentration Using a Sensor-Based Air Monitoring System. Atmosphere, 15(6), 664. https://doi.org/10.3390/atmos15060664