Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD
Abstract
:1. Introduction
2. Working Principle of SCR System
3. Low-Temperature NOx Reduction Technologies
3.1. Research on Low-Temperature Catalyst
3.2. Research on Advanced SCR System Arrangement
3.3. Research on Low-Temperature SCR Reductants
4. The Combination of SCR and Remote OBD
4.1. Identification of High NOx Emission Vehicles
4.2. Detection of SCR Tampering Vehicles
5. Conclusions
- The copper-based molecular sieve catalysts have significant advantages in low-temperature NOx conversion efficiency, but relatively low efficiency in high-temperature conditions, and may lead to high N2O formation in the SCR system. The combination of multiple catalytic materials shows potential for achieving high conversion efficiency across a wide temperature range, and reduced N2O formation. The durability of SCR copper molecular sieve catalysts is crucial to ensuring low NOx emissions from diesel vehicles throughout their lifecycle.
- Accelerating the exhaust temperature rise during low-temperature engine operation to meet the urea injection requirements has become a crucial research focus. Both cc-SCR and CDPF technologies can accelerate the increase in exhaust temperature within the SCR system, effectively improving NOx conversion efficiency during cold starts. However, for aftertreatment systems that include cc-SCR, the control strategy is a challenge; and, for CDFP, durability constraints limit its widespread use.
- Solid ammonium and gaseous reductants can effectively address the issue of urea not being able to be injected under low-temperature exhaust conditions and have significant potential to greatly improve the low-temperature NOx conversion efficiency of SCR systems. However, the refueling infrastructure for solid ammonium is still inadequate, which limits its large-scale use. For gaseous reductants, such as hydrocarbons, the main future technical challenge is to enhance the selectivity of the catalyst for the reaction between gaseous reductants and NOx.
- Remote OBD is an important technological measure used in recent emission regulations to monitor the NOx conversion efficiency of diesel vehicle SCR systems throughout the entire lifecycle. ICCT proposed the future function of remote OBD: 1. Develop a standardized methodology for fleet screening to identify potentially non-compliant vehicles. 2. Establish remote sensing standards and create a remote sensing record database.3. Strengthen anti-tampering provisions.
- The accuracy of NOx emission data provided by remote OBD can support accurate assessment of NOx emissions from heavy-duty vehicles, but it requires the use of necessary data correction algorithms. Additionally, it is important to utilize the limited data items available from remote OBD to as closely as possible replicate the emission testing process required by the specific emission regulations.
- Tampering with the SCR systems of heavy-duty diesel vehicles significantly increases NOx emissions and pollutes the atmospheric environment. Remote OBD systems are an important technology for identifying tampering in SCR systems of heavy-duty vehicles. The reliability of SCR tampering detection based on remote OBD systems depends on the accuracy of the data. Additionally, due to the immense computational load required for identifying tampered vehicles, there is a need to develop SCR tampering detection algorithms that balance both accuracy and computational efficiency.
Author Contributions
Funding
Conflicts of Interest
References
- Teixeira, A.C.R.; Machado, P.G.; Collaço, F.M.d.A.; Mouette, D. Alternative fuel technologies emissions for road heavy-duty trucks: A review. Environ. Sci. Pollut. Res. 2021, 28, 20954–20969. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 2014, 66, 395–414. [Google Scholar] [CrossRef]
- Ye, B.; Jeong, B.; Lee, M.-J.; Kim, T.H.; Park, S.-S.; Jung, J.; Lee, S.; Kim, H.-D. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: Stationary sources. Nano Converg. 2022, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.V. Diesel emission control in review. SAE Int. J. Fuels Lubr. 2009, 1, 68–81. Available online: https://www.jstor.org/stable/26271991 (accessed on 1 January 2009). [CrossRef]
- Rodríguez, F.; Posada, F. Future Heavy-Duty Emission Standards; International Council for Clean Transportation: Washington, DC, USA, 2019. [Google Scholar]
- Sandhu, N.; Yu, X.; Zheng, M. Catalytic NOx Aftertreatment—Towards Ultra-Low NOx Mobility. Int. J. Automot. Manuf. Mater. 2024, 3, 4. [Google Scholar] [CrossRef]
- Andrych-Zalewska, M. Analysis of exhaust emission processes during the Real Driving Emissions test. Arch. Transp. 2023, 66, 123–148. [Google Scholar] [CrossRef]
- Barbier, A.; Salavert, J.M.; Palau, C.E.; Guardiola, C. Analysis of the Euro 7 on-board emissions monitoring concept with real-driving data. Transp. Res. Part D Transp. Environ. 2024, 127, 104062. [Google Scholar] [CrossRef]
- Li, W.; Dong, Z.; Miao, L.; Wu, G.; Deng, Z.; Zhao, J.; Huang, W. On-road evaluation and regulatory recommendations for NOx and particle number emissions of China VI heavy-duty diesel trucks: A case study in Shenzhen. Sci. Total Environ. 2024, 928, 172427. [Google Scholar] [CrossRef]
- Elkaee, S.; Phule, A.D.; Yang, J.H. Advancements in Selective Catalytic Reduction (SCR) Technologies for NOx Reduction: A Comprehensive Review of Reducing Agents. Process Saf. Environ. Prot. 2024, 184, 854–880. [Google Scholar] [CrossRef]
- Sun, W.; Ye, M.; Gao, Y.; Sun, Y.; Qian, F.; Lu, J.; Wu, S.; Huang, N.; Xu, B. Effect of Catalyst Inlet Flow Field Distribution Characteristics on Outlet NO Concentration Distribution in SCR Denitration Reactor Based on Monte Carlo Method. Atmosphere 2022, 13, 931. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Yang, L.; Chen, G.; He, S. Intelligent optimization of diesel engine Selective catalytic reduction urea injection based on multi-model state estimation to reduce NH3 slip and NOx emission. Fuel 2024, 365, 131188. [Google Scholar] [CrossRef]
- Jiang, J.; Li, D. Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction. Appl. Energy 2016, 174, 232–244. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, L.; Liu, D.; Ji, J.; Li, S.; Zhao, L.; Zen, X. Emission Characteristics of Heavy-Duty Vehicle Diesel Engines at High Altitudes. J. Appl. Fluid Mech. 2023, 16, 2329–2343. [Google Scholar] [CrossRef]
- Kossioris, T.; Maurer, R.; Sterlepper, S.; Günther, M.; Pischinger, S. Challenges and Solutions to Meet the Euro 7 NOx Emission Requirements for Diesel Light-Duty Commercial Vehicles. Emiss. Control Sci. Technol. 2024, 1–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, B.; Zheng, C.; Zhou, J.; Su, T.; Guo, J.; Chen, J.; Chen, Y.; Zhang, J.; Dang, H. Research on the resistance of catalysts for selective catalytic reduction: Current progresses and future perspectives. J. Clean. Prod. 2023, 434, 139920. [Google Scholar] [CrossRef]
- Maunula, T.; Kinnunen, T.; Kanniainen, K.; Viitanen, A.; Savimaki, A. Thermally Durable Vanadium-SCR Catalysts for Diesel Applications; SAE Technical Papers: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Binh Ngo, A.; Huyen Vuong, T.; Atia, H.; Weiß, J.; Rabeah, J.; Armbruster, U.; Brückner, A. Role of V and W Sites in V2O5-WO3/TiO2 Catalysts and Effect of Formaldehyde during NH3-SCR of NOx. ChemCatChem 2022, 14, e202200175. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, X.; Gao, H.; Zheng, Y.; Luo, L.; Zhu, T. Ca-Poisoning effect on V2O5-WO3/TiO2 and V2O5-WO3-CeO2/TiO2 catalysts with different vanadium loading. Catalysts 2021, 11, 445. [Google Scholar] [CrossRef]
- Martín-Martín, J.; Gallastegi-Villa, M.; González-Marcos, M.P.; Aranzabal, A.; González-Velasco, J.R. Bimodal effect of water on V2O5/TiO2 catalysts with different vanadium species in the simultaneous NO reduction and 1,2-dichlorobenzene oxidation. Chem. Eng. J. 2021, 417, 129013. [Google Scholar] [CrossRef]
- Mohan, S.; Dinesha, P.; Kumar, S. NOx reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review. Chem. Eng. J. 2020, 384, 123253. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, R.T. N2O formation pathways over zeolite-supported Cu and Fe catalysts in NH3-SCR. Energy Fuels 2018, 32, 2170–2182. [Google Scholar] [CrossRef]
- Girard, J.W.; Montreuil, C.; Kim, J.; Cavataio, G.; Lambert, C. Technical advantages of vanadium SCR systems for diesel NOx control in emerging markets. SAE Int. J. Fuels Lubr. 2009, 1, 488–494. Available online: https://www.jstor.org/stable/26272026 (accessed on 1 January 2009). [CrossRef]
- Metkar, P.S.; Harold, M.P.; Balakotaiah, V. Experimental and kinetic modeling study of NH3-SCR of NOx on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts. Chem. Eng. Sci. 2013, 87, 51–66. [Google Scholar] [CrossRef]
- Jung, Y.; Shin, Y.J.; Pyo, Y.D.; Cho, C.P.; Jang, J.; Kim, G. NOx and N2O emissions over a Urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine. Chem. Eng. J. 2017, 326, 853–862. [Google Scholar] [CrossRef]
- Shiyu, L.; Boyuan, W.; Zexian, G.; Buyu, W.; Zhaohuan, Z.; Xiao, M.; Chen-Teng, C.; Peng, W.; Xin, H.; Xingyu, S. Experimental investigation of urea injection strategy for close-coupled SCR aftertreatment system to meet ultra-low NOx emission regulation. Appl. Therm. Eng. 2022, 205, 117994. [Google Scholar] [CrossRef]
- Lee, K.; Lee, J.; Lee, S.; Oh, K.; Jang, S. Fuel Consumption and Emission Reduction for Non-Road Diesel Engines with Electrically Heated Catalysts. Catalysts 2023, 13, 950. [Google Scholar] [CrossRef]
- Gao, J.; Tian, G.; Sorniotti, A.; Karci, A.E.; Di Palo, R. Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up. Appl. Therm. Eng. 2019, 147, 177–187. [Google Scholar] [CrossRef]
- Zavala, B.; Sharp, C.; Systems Solution for Diesel Emissions. Southwest Research Institute. 2020. Available online: https://www.swri.org/technology-today/systems-solution-diesel-emissions (accessed on 24 July 2024).
- Harris, T.M.; Mc Pherson, K.; Rezaei, R.; Kovacs, D.; Rauch, H.; Huang, Y. Modeling of Close-Coupled SCR Concepts to Meet Future Cold Start Requirements for Heavy-Duty Engines; SAE Technical Papers: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Joshi, A. Year in Review: Progress towards Decarbonizing Transport and Near-Zero Emissions; SAE Technical Papers: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Han, F.; Wang, X.; Wang, Y. Influence of Two-Stage Urea-Selective Catalytic Reduction System on Performance and Emissions of Diesel Engine. Chin. Intern. Combust. Engine Eng. 2019, 40, 41–45. [Google Scholar] [CrossRef]
- Li, J.; Yao, M.; Zheng, Z.; Wang, X. Achieving low NOx emissions with tightly coupled after-treatment systems. J. Intern. Combust. Engine 2023, 41, 141–149. [Google Scholar] [CrossRef]
- Ghosh, R.S.; Dhillon, P.S.; Harold, M.P.; Wang, D. Kinetics of NH3 oxidation on Pt/Al2O3: Rate enhancement and NH3 inhibition. Chem. Eng. J. 2021, 417, 128273. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Tan, P.-Q.; Duan, L.-S.; Liu, Y.; Lou, D.-M.; Hu, Z.-Y. Temperature, particulate emission characteristics, and emission reduction performance for SCR coated on DPF under drop to idle regeneration. Energy 2023, 268, 126764. [Google Scholar] [CrossRef]
- Johansen, K.; Bentzer, H.; Kustov, A.; Larsen, K.; Janssens, T.V.; Barfod, R.G. Integration of Vanadium and Zeolite Type SCR Functionality into DPF in Exhaust Aftertreatment Systems—Advantages and Challenges; SAE Technical Papers: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Ogyu, K.; Ogasawara, T.; Sato, H.; Yamada, K.; Ohno, K. Development of High Porosity SiC-DPF Which is Compatible with High Robustness and Catalyst Coating Capability for SCR Coated DPF Application; SAE Technical Papers: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Haga, H.; Hashimoto, E.; Nakajima, K.; Matsunaga, H.; Yasui, Y. New concept urea-SCR control for super clean diesel vehicle. IFAC Proc. Vol. 2013, 46, 15–16. [Google Scholar] [CrossRef]
- Olowojebutu, S.; Steffen, T. A Review of the Literature on Modelling of Integrated SCR-in-DPF Systems; SAE Technical Papers: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Raza, H.; Woo, S.; Kim, H. A review of solid SCR systems as an alternative for NOx reduction from diesel engines. Int. J. Engine Res. 2023, 24, 3817–3829. [Google Scholar] [CrossRef]
- Fulks, G.; Fisher, G.B.; Rahmoeller, K.; Wu, M.-C.; D’Herde, E.; Tan, J. A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCRl; SAE Technical Papers: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, J. Experimental study on solid SCR technology to reduce NOx emissions from diesel engines. IEEE Access 2020, 8, 151106–151115. [Google Scholar] [CrossRef]
- Liu, Y.; Ni, H.; Li, G.; Zhi, D. Research on NH3-SCR reductant technology progress for diesel vehicles. In Proceedings of the E3S Web of Conferences, Wuhan, China, 25 November 2020. [Google Scholar]
- Ghasemian, N.; Falamaki, C.; Kalbasi, M. Clinoptilolite zeolite as a potential catalyst for propane-SCR-NOx: Performance investigation and kinetic analysis. Chem. Eng. J. 2014, 236, 464–470. [Google Scholar] [CrossRef]
- Sitshebo, S.; Tsolakis, A.; Theinnoi, K. Promoting hydrocarbon-SCR of NOx in diesel engine exhaust by hydrogen and fuel reforming. Int. J. Hydrogen Energy 2009, 34, 7842–7850. [Google Scholar] [CrossRef]
- Yentekakis, I.V.; Georgiadis, A.G.; Drosou, C.; Charisiou, N.D.; Goula, M.A. Selective Catalytic reduction of NOx over Perovskite-based catalysts using CxHy (Oz), H2 and CO as reducing agents—A review of the latest developments. Nanomaterials 2022, 12, 1042. [Google Scholar] [CrossRef]
- Pan, P.; Yan, F.; Fang, M. OBD System Status and Development Trends. Transp. Energy Environ. Prot. 2007, 5, 36–39. [Google Scholar] [CrossRef]
- Chen, C.; Xu, C. Overview of Automotive OBD Systems. Automot. Ind. Res. 2016, 8, 37–40. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, P.; He, L.; Yang, Y.; Liu, B.; He, W.; Cheng, Y.; Liu, Y.; Liu, S.; Hu, Q. On-board monitoring (OBM) for heavy-duty vehicle emissions in China: Regulations, early-stage evaluation and policy recommendations. Sci. Total Environ. 2020, 731, 139045. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Yin, H.; Wang, Y.; Wang, H.; He, C.; Liang, J.; He, D.; Yin, H.; He, K. Assessing heavy-duty vehicles (HDVs) on-road NOx emission in China from on-board diagnostics (OBD) remote report data. Sci. Total Environ. 2022, 846, 157209. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; He, L.; He, W.; Zhao, P.; Wang, P.; Zhao, J.; Zhang, K.; Zhang, S. Evaluating on-board sensing-based nitrogen oxides (NOx) emissions from a heavy-duty diesel truck in China. Atmos. Environ. 2019, 216, 116908. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Tian, M.; Zhao, C.; Zhang, Y.; Wang, X.; Liu, J.; Fu, M.; Yin, H.; Ding, Y. Assessment of identification performance for high emission heavy-duty diesel vehicles by means of remote sensing. Sci. Total Environ. 2024, 912, 168851. [Google Scholar] [CrossRef]
- He, W.; Zheng, X.; Zhang, Y.; Han, Y. Study on determination of excessive emissions of heavy diesel trucks based on OBD data repaired. Atmosphere 2022, 13, 924. [Google Scholar] [CrossRef]
- Wang, T.; Liu, J.; Wan, C.; Wang, Z. Remote supervision strategy based on in-use vehicle OBD data flow. In Proceedings of the E3S Web of Conferences, Wuhan, China, 25 November 2020. [Google Scholar]
- Zhang, X.; Li, J.; Liu, H.; Li, Y.; Li, T.; Sun, K.; Wang, T. A fuel-consumption based window method for PEMS NOx emission calculation of heavy-duty diesel vehicles: Method description and case demonstration. J. Environ. Manag. 2023, 325, 116446. [Google Scholar] [CrossRef]
- Huang, Y.; Ng, E.C.; Yam, Y.-S.; Lee, C.K.; Surawski, N.C.; Mok, W.-C.; Organ, B.; Zhou, J.L.; Chan, E.F. Impact of potential engine malfunctions on fuel consumption and gaseous emissions of a Euro VI diesel truck. Energy Convers. Manag. 2019, 184, 521–529. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Forloni, F.; Carriero, M.; Baldini, G.; Castellano, P.; Vermeulen, R.; Kontses, D.; Fragkiadoulakis, P.; Samaras, Z.; Fontaras, G. Effect of tampering on on-road and off-road diesel vehicle emissions. Sustainability 2022, 14, 6065. [Google Scholar] [CrossRef]
- Meiracker, J.A.v.d.; Vermeulen, R. Smart Adaptive Remote Diagnostic Antitampering Systems D3.2; European Commission: Brussels, Blegium, 2020; pp. 19–20. [Google Scholar]
- He, L.; Zhang, S.; Hu, J.; Li, Z.; Zheng, X.; Cao, Y.; Xu, G.; Yan, M.; Wu, Y. On-road emission measurements of reactive nitrogen compounds from heavy-duty diesel trucks in China. Environ. Pollut. 2020, 262, 114280. [Google Scholar] [CrossRef]
- Hao, L.; Yin, H.; Wang, J.; Li, L.; Lu, W.; Wang, H.; Ge, Y.; Sjödin, Å. A multi-pronged approach to strengthen diesel vehicle emission monitoring. Environ. Sci. Adv. 2022, 1, 37–46. [Google Scholar] [CrossRef]
- Bolboacă, R. Adaptive ensemble methods for tampering detection in automotive aftertreatment systems. IEEE Access 2022, 10, 105497–105517. [Google Scholar] [CrossRef]
- Bolboacă, R.; Haller, P.; Kontses, D.; Papageorgiou-Koutoulas, A.; Doulgeris, S.; Zingopis, N.; Samaras, Z. Tampering detection for automotive exhaust aftertreatment systems using long short-term memory predictive networks. In Proceedings of the 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 6–10 June 2022. [Google Scholar]
- Haller, P.; Genge, B.; Forloni, F.; Baldini, G.; Carriero, M.; Fontaras, G. VetaDetect: Vehicle tampering detection with closed-loop model ensemble. Int. J. Crit. Infrastruct. Prot. 2022, 37, 100525. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Q.; Zhang, L.; Ma, Z.; Wang, L.; Yang, F.; Liu, L.; Wang, Y. Construction of SCR cheating models for in-use heavy-duty vehicles based on remote OBD data. In Proceedings of the Third International Conference on Control and Intelligent Robotics (ICCIR 2023), Changsha, China, 23–25 June 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liu, Q.; Liu, H.; Wang, T. Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD. Atmosphere 2024, 15, 997. https://doi.org/10.3390/atmos15080997
Chen Z, Liu Q, Liu H, Wang T. Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD. Atmosphere. 2024; 15(8):997. https://doi.org/10.3390/atmos15080997
Chicago/Turabian StyleChen, Zhengguo, Qingyang Liu, Haoye Liu, and Tianyou Wang. 2024. "Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD" Atmosphere 15, no. 8: 997. https://doi.org/10.3390/atmos15080997
APA StyleChen, Z., Liu, Q., Liu, H., & Wang, T. (2024). Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD. Atmosphere, 15(8), 997. https://doi.org/10.3390/atmos15080997