In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temporal Variation of Particulate Matter
3.2. Relationship between In-Vehicle PM2.5 and Local PM2.5 Concentrations
3.3. CO2 Buildup In-Vehicles
3.4. Speed vs. In-Vehicle Particulate Matter Concentrations
4. Conclusions
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukund, R.; Kelly, T.J.; Spicer, C.W. Source Attribution of Ambient Air Toxic and Other VOCS in Columbus, Ohio. Atmos. Environ. 1996, 30, 3457. [Google Scholar] [CrossRef]
- Aarnio, P.; Yli-Tuomi, T.; Kousa, A.; Mäkelä, T.; Hirsikko, A.; Hämeri, K.; Räisänen, M.; Hillamo, R.; Koskentalo, T.; Jantunen, M. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 2005, 39, 5059–5066. [Google Scholar] [CrossRef]
- Aggarwal, S.G.; Kumar, S.; Mandal, P.; Sarangi, B.; Singh, K.; Pokhariyal, J.; Mishra, S.K.; Agarwal, S.; Sinha, D.; Singh, S.; et al. Traceability Issue in PM2.5 and PM10 Measurements. Mapan—J. Metrol. Soc. India 2013, 28, 153–166. [Google Scholar] [CrossRef]
- Fast Facts on Transportation Greenhouse Gas Emissions. Available online: https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions (accessed on 22 August 2024).
- Li, C.; Managi, S. Contribution of on-road transportation to PM2.5. Sci. Rep. 2021, 11, 21320. [Google Scholar] [CrossRef]
- Wu, T.G.; Chen, Y.D.; Chen, B.H.; Harada, K.H.; Lee, K.; Deng, F.; Rood, M.J.; Chen, C.C.; Tran, C.T.; Chien, K.L.; et al. Identifying low-PM2.5 exposure commuting routes for cyclists through modeling with the random forest algorithm based on low-cost sensor measurements in three Asian cities. Environ. Pollut. 2022, 294, 118597. [Google Scholar] [CrossRef]
- Kim, W.; Anorve, V.; Tefft, B.C. American Driving Survey, 2014–2017. 2019. Available online: https://trid.trb.org/View/1590683 (accessed on 15 September 2024).
- Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Nogueira, T.; Abbass, R.A.; Brand, V.S.; de Fatima Andrade, M.; Asfaw, A.; Aziz, K.H.; Cao, S.; El-Gendy, A. In-car particulate matter exposure across ten global cities. Sci. Total Environ. 2021, 750, 141395. [Google Scholar] [CrossRef]
- Matthaios, V.N.; Harrison, R.M.; Koutrakis, P.; Bloss, W.J. In-vehicle exposure to NO2 and PM2.5: A comprehensive assessment of controlling parameters and reduction strategies to minimise personal exposure. Sci. Total Environ. 2023, 900. [Google Scholar] [CrossRef]
- De Nazelle, A.; Fruin, S.; Westerdahl, D.; Martinez, D.; Ripoll, A.; Kubesch, N.; Nieuwenhuijsen, M. A travel mode comparison of commuters’ exposures to air pollutants in Barcelona. Atmos. Environ. 2012, 59, 151–159. [Google Scholar] [CrossRef]
- Wang, C.; Lim, B.; Wang, Y.; Huang, Y.T. Identification of high personal PM2.5 exposure during real time commuting in the Taipei metropolitan area. Atmosphere 2021, 12, 396. [Google Scholar] [CrossRef]
- California Tops US EV Adoption: 25% EV Share of Total Sales In H1 2023. Available online: https://insideevs.com/news/688779/california-tops-us-ev-adoption-25-percent-share-total-sales-h1-2023/ (accessed on 28 August 2024).
- California Moves to Accelerate to 100% New Zero-Emission Vehicle Sales by 2035. Available online: https://ww2.arb.ca.gov/news/california-moves-accelerate-100-new-zero-emission-vehicle-sales-2035#:~:text=The%20rule%20establishes%20a%20year-by-year%20roadmap%20so%20that,set%20out%20in%20Governor%20Newsom%E2%80%99s%20Executive%20Order%20N-79-20. (accessed on 28 August 2024).
- Ewing, J. President Biden Sets a Goal of 50 Percent Electric Vehicle Sales by 2030. NewYork Times 2021. Available online: https://www.nytimes.com/2021/08/05/business/biden-electric-vehicles.html (accessed on 28 August 2024).
- Timmers, V.R.; Achten, P.A. Non-exhaust PM emissions from electric vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Muratori, L.; Peretto, L.; Pulvirenti, B.; Di Sante, R.; Bottiglieri, G.; Coiro, F. Optimal Control of Air Conditioning Systems by Means of CO2 Sensors in Electric Vehicles. Sensors 2022, 22, 1190. [Google Scholar] [CrossRef] [PubMed]
- Ventilation for Acceptable Indoor Air Quality. 2016. Available online: https://www.ashrae.org/File%20Library/Technical%20Resources/Standards%20and%20Guidelines/Standards%20Addenda/62.1-2016/62_1_2016_d_20180302.pdf (accessed on 15 July 2024).
- EPA Indoor Air Quality—Website. Available online: https://www.epa.gov/indoor-air-quality-iaq/can-i-measure-carbon-dioxide-co2-indoors-get-information-ventilation (accessed on 2 July 2024).
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Hudda, N.; Fruin, S.A. Carbon dioxide accumulation inside vehicles: The effect of ventilation and driving conditions. Sci. Total Environ. 2018, 610, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Zhu, Y. Application of a high-efficiency cabin air filter for simultaneous mitigation of ultrafine particle and carbon dioxide exposures inside passenger vehicles. Environ. Sci. Technol. 2014, 48, 2328–2335. [Google Scholar] [CrossRef] [PubMed]
- Lohani, D.; Barthwal, A.; Acharya, D. Predictive Modelling of In-vehicle CO2 Concentration using Sensor Data Analytics. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; pp. 1–4. [Google Scholar]
- Lohani, D.; Barthwal, A.; Acharya, D. Modeling vehicle indoor air quality using sensor data analytics. J. Reliab. Intell. Environ. 2022, 8, 105–115. [Google Scholar] [CrossRef]
- D’Eon, J.C.; Stirchak, L.T.; Brown, A.S.; Saifuddin, Y. Project-Based Learning Experience That Uses Portable Air Sensors to Characterize Indoor and Outdoor Air Quality. J. Chem. Educ. 2021, 98, 445–453. [Google Scholar] [CrossRef]
- Williams, R. Findings from the 2013 EPA Air Sensors Workshop2013. Available online: https://19january2017snapshot.epa.gov/air-research/findings-2013-epa-air-sensors-workshop.html (accessed on 7 June 2024).
- Woodall, G.M.; Hoover, M.D.; Williams, R.; Benedict, K.; Harper, M.; Soo, J.C.; Jarabek, A.M.; Stewart, M.J.; Brown, J.S.; Hulla, J.E.; et al. Interpreting mobile and handheld air sensor readings in relation to air quality standards and health effect reference values: Tackling the challenges. Atmosphere 2017, 8, 182. [Google Scholar] [CrossRef]
- Temtop M2000 2nd Generation—Air Quality Monitor with Data Export. Available online: https://temtopus.com/products/temtop-m2000-2nd-generation-air-quality-monitor-for-pm2-5-pm10-particles-co2-hcho-temperature-humidity-settable-audio-alarm-data-export-recording-curve-easy-calibration?variant=40587983421488 (accessed on 7 June 2024).
- Flow 2, by Plume Labs: The First Smart Air Quality Tracker. Available online: https://plumelabs.com/en/flow/ (accessed on 6 June 2024).
- Qiu, Z.; Cao, H. Commuter exposure to particulate matter in urban public transportation of Xi’an, China. J. Environ. Health Sci. Eng. 2020, 18, 451–462. [Google Scholar] [CrossRef]
- Nissan Rogue Specifications. Available online: https://www.caranddriver.com/nissan/rogue/specs/2023/nissan_rogue_nissan-rogue_2023 (accessed on 2 July 2024).
- Temtop M2000 Evaluation Summary—South Coast AQMD. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/summary/elitech-temtop-m2000-2nd-generation---summary-report.pdf?sfvrsn=8 (accessed on 12 June 2024).
- Temtop M2000 Field Evaluation Report. Available online: http://www.aqmd.gov/aq-spec/sensordetail/elitech---temtop-m2000 (accessed on 12 June 2024).
- Temtop M2000—Laboratory Evaluation Report. Available online: http://www.aqmd.gov/aq-spec/sensordetail/elitech---temtop-m2000 (accessed on 12 June 2024).
- Flow 2 Evaluation Report by South Coast AQMD. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/plume-labs-flow-2---field-evaluation.pdf?sfvrsn=8 (accessed on 12 June 2024).
- Kim, H.; Kim, J.; Roh, S. Effects of Gas and Steam Humidity on Particulate Matter Measurements Obtained Using Light-Scattering Sensors. Sensors 2023, 23, 6199. [Google Scholar] [CrossRef]
- Jayaratne, R.; Liu, X.; Thai, P.; Dunbabin, M.; Morawska, L. The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog. Atmos. Meas. Tech. 2018, 11, 4883. [Google Scholar] [CrossRef]
- Southbound I-680 Lane Closures Between San Ramon and Sunol at Various Locations for Tree Removal May 29-Late August 2023. 2023. Available online: https://dot.ca.gov/caltrans-near-me/district-4/d4-news/2023-05-16-sb-680-tree-work (accessed on 7 June 2024).
- 2024 Annual Air Monitoring Network Plan. Available online: https://www.baaqmd.gov/en/news-and-events/page-resources/2024-news/052024-amnp (accessed on 5 June 2024).
- Goel, R.; Gani, S.; Guttikunda, S.K.; Wilson, D.; Tiwari, G. On-road PM2.5 pollution exposure in multiple transport microenvironments in Delhi. Atmos. Environ. 2015, 123, 129–138. [Google Scholar] [CrossRef]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Int. J. Intell. Technol. Appl. Stat. 2018, 11, 105–111. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, S.; Ding, Z.; Wang, Y.; Yang, Y.; Guo, S. Temporal variation of near-surface CO2 concentrations over different land uses in Suzhou City. Environ. Earth Sci. 2016, 75, 1197. [Google Scholar] [CrossRef]
- Haversine Formula for Computing Speed. Available online: https://andyarthur.org/haversine-formula-in-ecel.html (accessed on 9 June 2024).
- Oroumiyeh, F.; Zhu, Y. Brake and tire particles measured from on-road vehicles: Effects of vehicle mass and braking intensity. Atmos. Environ. X 2021, 12, 100121. [Google Scholar] [CrossRef]
- California Air Resources Board—Particulate Matter. Available online: https://ww2.arb.ca.gov/resources/inhalable-particulate-matter-and-health (accessed on 9 June 2024).
- Hofman, J.; Peters, J.; Stroobants, C.; Elst, E.; Baeyens, B.; Van Laer, J.; Spruyt, M.; Van Essche, W.; Delbare, E.; Roels, B. Air quality sensor networks for evidence-based policy making: Best practices for actionable insights. Atmosphere 2022, 13, 944. [Google Scholar] [CrossRef]
Study Area | PM2.5 Concentrations | Devices Used | Year of Publication |
---|---|---|---|
Barcelona, Spain | On average, 30 µg/m3 during morning rush hour and 25 µg/m3 during evening rush hour | DustTrak (TSI, 8520) | 2012 [11] |
Sacramento, CA, USA | 7.1 ± 3.3 µg/m3 | DustTrak (TSI 8520) | 2017 [8] |
Taipei, Taiwan | Range: 8–80 µg/m3 Average: 15 µg/m3 | Temtop P600 Air Quality Laser Particle Detector | 2021 [12] |
10 cities in Asia, Africa, and South America | 16–65 µg/m3 on average | Dylos Laser Particle Counter | 2021 [9] |
Birmingham, UK | 6.4 ± 2.7 µg/m3 | OPS Spectrometer, TSI Model 3330 | 2023 [10] |
This Study | 5.07–6.55 µg/m3, and 4.38–4.47 µg/m3 during morning and evening rush hours, respectively. | Temtop M2000 and Flow 2 | 2024 |
Type | Season | Temtop M2000 PM2.5 (µg/m3) (Mean ± SD) | Temtop M2000 PM10 (µg/m3) (Mean ± SD) | Average Relative Humidity (%) | Average Local PM2.5 (µg/m3) |
---|---|---|---|---|---|
In-vehicle | Spring | 5.96 ± 5.56 | 7.76 ± 6.13 | 79.63 | 7.53 |
In-vehicle | Summer | 6.55 ± 3.75 | 8.99 ± 5.19 | 78.13 | 6.89 |
In-vehicle | Fall | 5.07 ± 2.33 | 6.95 ± 3.85 | 81.08 | 6.46 |
In-vehicle | Winter * | 6.31 ± 3.85 | 8.95 ± 5.90 | 95.50 | 7.72 |
Type | Season | Temtop M2000 PM2.5 (µg/m3) (Mean ± SD) | Temtop M2000 PM10 (µg/m3) (Mean ± SD) | Average Relative Humidity (%) | Average Local PM2.5 (µg/m3) |
---|---|---|---|---|---|
In-vehicle | Spring | 4.38 ± 3.24 | 5.42 ± 3.57 | 57.17 | 7.47 |
In-vehicle | Summer | 4.47 ± 1.89 | 5.65 ± 2.70 | 52.90 | 6.24 |
In-vehicle | Fall | 4.46 ± 1.64 | 5.95 ± 2.80 | 57.23 | 4.95 |
In-vehicle | Winter * | 7.07 ± 4.91 | 9.55 ± 7.49 | 80.00 | 10.31 |
Sensor | Equation | R2 | RMSE | MAPE |
---|---|---|---|---|
Temtop M2000 | Logarithmic | 0.52 | 0.33 | 27.51% |
Exponential | 0.38 | 0.35 | 29.72% | |
Linear | 0.29 | 0.35 | 33.26% |
Date and Trip | Average Speed (km/h) | Correlation R between PM2.5 and Speed | Correlation R between PM10 and Speed |
---|---|---|---|
19 May 2023 a.m. | 90.93 | 0.076 | 0.076 |
25 May 2023 p.m. | 76.28 | 0.01 | 0.008 |
5 June 2023 p.m. | 77.38 | 0.15 | 0.28 |
22 June 2023 p.m. | 70.58 | 0.09 | 0.04 |
20 July 2023 a.m. | 96.56 | 0.15 | 0.10 |
10 August 2023 a.m. | 96.67 | 0.22 | 0.32 |
25 September 2023 a.m. | 104.60 | 0.16 | 0.20 |
10 October 2023 p.m. | 86.87 | −0.07 | −0.01 |
8 December 2023 p.m. | 78.86 | −0.12 | 0.14 |
14 December 2023 p.m. | 64.90 | 0.21 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deevi, R.; Lu, M. In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California. Atmosphere 2024, 15, 1130. https://doi.org/10.3390/atmos15091130
Deevi R, Lu M. In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California. Atmosphere. 2024; 15(9):1130. https://doi.org/10.3390/atmos15091130
Chicago/Turabian StyleDeevi, Reshmasri, and Mingming Lu. 2024. "In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California" Atmosphere 15, no. 9: 1130. https://doi.org/10.3390/atmos15091130
APA StyleDeevi, R., & Lu, M. (2024). In-Vehicle Air Pollutant Exposures from Daily Commute in the San Francisco Bay Area, California. Atmosphere, 15(9), 1130. https://doi.org/10.3390/atmos15091130