Composition, Sources, and Distribution of PM2.5 Saccharides in a Coastal Urban Site of China
Abstract
:1. Introduction
2. Experiments
2.1. Sampling
2.2. Chemical Analysis
2.3. QA/QC
2.4. Multiple Statistical Analysis
2.4.1. Backward Trajectory Analysis
2.4.2. Potential Source Contribution Function (PSCF) Analysis
2.4.3. Positive Matrix Factorization (PMF) Analysis
3. Results and Discussion
3.1. Concentrations and Seasonal Variations of Saccharides
3.1.1. Anhydrosaccharides
3.1.2. Saccharide Alcohol
3.1.3. Monosaccharides
3.2. PMF Analysis and PSCF Analysis
3.3. The Formation Process of High Level of Levoglucosan
3.4. Relations between Saccharides and PM2.5 Levels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Herrmann, H.; Ervens, B.; Jacobi, H.W.; Wolke, R.; Nowacki, P.; Zellner, R. CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry. J. Atmos. Chem. 2000, 36, 231–284. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Santos, E.B.H.; Pio, C.A.; Duarte, A.C. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances. Atmos. Environ. 2007, 41, 8100–8113. [Google Scholar] [CrossRef]
- Lopes, S.P.; Matos, J.T.V.; Silva, A.M.S.; Duarte, A.C.; Duarte, R.M.B.O. 1H NMR studies of water- and alkaline-soluble organic matter from fine urban atmospheric aerosols. Atmos. Environ. 2015, 119, 374–380. [Google Scholar] [CrossRef]
- Fuzzi, S.; Decesari, S.; Facchini, M.C.; Cavalli, F.; Emblico, L.; Mircea, M.; Andreae, M.O.; Trebs, I.; Hoffer, A.; Guyon, P.; et al. Overview of the inorganic and organic composition of size-segregated aerosol in Rondonia, Brazil, from the biomass-burning period to the onset of the wet season. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Wang, G.; Chen, C.; Li, J.; Zhou, B.; Xie, M.; Hu, S.; Kawamura, K.; Chen, Y. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning. Atmos. Environ. 2011, 45, 2473–2479. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Elias, V.O.; Kobayashi, M.; Kawamura, K.; Rushdi, A.I.; Medeiros, P.M.; Rogge, W.F.; Didyk, B.M. Sugars—Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ. Sci. Technol. 2004, 38, 5939–5949. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.Q.; Zheng, M.; Sullivan, A.P.; Bosch, C.; Desyaterik, Y.; Andersson, A.; Li, X.Y.; Guo, X.S.; Zhou, T.; Gustafsson, O.; et al. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions. Atmos. Environ. 2015, 121, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Despres, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Froehlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Poeschl, U.; et al. Primary biological aerosol particles in the atmosphere: A review. Tellus Ser. B Chem. Phys. Meteorol. 2012, 64. [Google Scholar] [CrossRef]
- Rogge, W.F.; Medeiros, P.M.; Simoneit, B.R.T. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study. Atmos. Environ. 2007, 41, 8183–8204. [Google Scholar] [CrossRef]
- Vélëz, H.; Glassbrook, N.J.; Daub, M.E. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genet. Biol. 2007, 44, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, D.; Torri, C.; Simonei, B.R.T.; Marynowski, L.; Rushdi, A.I.; Fabianska, M.J. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos. Environ. 2009, 43, 2286–2295. [Google Scholar] [CrossRef]
- Fraser, M.P.; Lakshmanan, K. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ. Sci. Technol. 2000, 34, 4560–4564. [Google Scholar] [CrossRef]
- Jung, J.; Lee, S.; Kim, H.; Kim, D.; Lee, H.; Oh, S. Quantitative determination of the biomass-burning contribution to atmospheric carbonaceous aerosols in Daejeon, Korea, during the rice-harvest period. Atmos. Environ. 2014, 89, 642–650. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Zhang, Z.-S.; Chan, C.-Y.; Engling, G.; Sang, X.-F.; Shi, S.; Wang, X.-M. Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: Case study on transport of biomass burning smoke from the Philippines. Environ. Sci. Pollut. Res. 2012, 19, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.H.; Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Kawamura, K.; Kobayashi, M.; Simoneit, B.R.T. Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. Atmos. Environ. 2012, 55, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.I.; Sopajaree, K.; Kuo, S.C.; Hsin, T.Y. Chemical Composition and Size-Fractionated Origins of Aerosols over a Remote Coastal Site in Southern Taiwan. Aerosol Air Qual. Res. 2015, 15, 2549–2570. [Google Scholar] [CrossRef]
- Tobo, Y.; Prenni, A.J.; DeMott, P.J.; Huffman, J.A.; McCluskey, C.S.; Tian, G.; Poehlker, C.; Poeschl, U.; Kreidenweis, S.M. Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. J. Geophys. Res. Atmos. 2013, 118, 10100–10110. [Google Scholar] [CrossRef]
- Zawadowicz, M.A.; Froyd, K.D.; Murphy, D.M.; Cziczo, D.J. Improved identification of primary biological aerosol particles using single-particle mass spectrometry. Atmos. Chem. Phys. 2017, 17, 7193–7212. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Ren, H.; Fan, S.; Wei, L.; Zhao, J.; Bao, M.; Hou, S.; Zhan, J.; Zhao, W.; Ren, L.; et al. High Abundance of Fluorescent Biological Aerosol Particles in Winter in Beijing, China. ACS Earth Space Chem. 2017, 1, 493–502. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, K.; Zhuang, G.; Fu, J.S.; Wang, Q.; Liu, T.; Deng, C.; Fu, Q. A multi-year evolution of aerosol chemistry impacting visibility and haze formation over an Eastern Asia megacity, Shanghai. Atmos. Environ. 2014, 92, 76–86. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Yang, C.; Wang, X.; Chen, J.; Collett, J.L., Jr. Fog water chemistry in Shanghai. Atmos. Environ. 2011, 45, 4034–4041. [Google Scholar] [CrossRef]
- Peng, J.; Li, M.; Zhang, P.; Gong, S.; Zhong, M.; Wu, M.; Zheng, M.; Chen, C.; Wang, H.; Lou, S. Investigation of the sources and seasonal variations of secondary organic aerosols in PM2.5 in Shanghai with organic tracers. Atmos. Environ. 2013, 79, 614–622. [Google Scholar]
- Ashbaugh, L.L.; Malm, W.C.; Sadeh, W.Z. A Residence Time Probability Analysis of Sulfur Concentrations at Grand-Canyon-National-Park. Atmos. Environ. 1985, 19, 1263–1270. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Cheng, M.D.; Hopke, P.K.; Barrie, L.; Rippe, A.; Olson, M.; Landsberger, S. Qualitative determination of source regions of aerosol in canadian high arctic. Environ. Sci. Technol. 1993, 27, 2063–2071. [Google Scholar] [CrossRef]
- Hopke, P.K.; Barrie, L.A.; Li, S.M.; Cheng, M.D.; Li, C.; Xie, Y. Possible sources and preferred pathways for biogenic and non-sea-salt sulfur for the high arctic. J. Geophys. Res. Atmos. 1995, 100, 16595–16603. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Xu, X.; Akhtar, U.S. Identification of potential regional sources of atmospheric total gaseous mercury in Windsor, Ontario, Canada using hybrid receptor modeling. Atmos. Chem. Phys. 2010, 10, 7073–7083. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Paatero, P.; Hopke, P.K. Rotational tools for factor analytic models. J. Chemom. 2010, 23, 91–100. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bacco, D.; Visentin, M.; Ferrari, S.; Casali, P. Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaigns—Part 2: Seasonal variations of sugars. Atmos. Environ. 2014, 97, 215–225. [Google Scholar] [CrossRef]
- Nirmalkar, J.; Deshmukh, D.K.; Deb, M.K.; Tsai, Y.I.; Sopajaree, K. Mass loading and episodic variation of molecular markers in PM2.5 aerosols over a rural area in eastern central India. Atmos. Environ. 2015, 117, 41–50. [Google Scholar] [CrossRef]
- Liang, L.; Engling, G.; Du, Z.; Cheng, Y.; Duan, F.; Liu, X.; He, K. Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China. Chemosphere 2016, 150, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.Y.; Ohara, T.; Akimoto, H. Bottom-up estimate of biomass burning in mainland China. Atmos. Environ. 2006, 40, 5262–5273. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.X.; Le, H.P.; Wang, F.W.; Guo, Z.G.; Iinuma, Y.; Chen, J.M.; Herrmann, H. Atmospheric outflow of PM2.5 saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. Atmos. Environ. 2016, 143, 1–14. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Schmidl, C.; Marr, L.L.; Caseiro, A.; Kotianova, P.; Berner, A.; Bauer, H.; Kasper-Giebl, A.; Puxbaum, H. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos. Environ. 2008, 42, 126–141. [Google Scholar] [CrossRef]
- Verma, S.K.; Kawamura, K.; Chen, J.; Fu, P.; Zhu, C. Thirteen years of observations on biomass burning organic tracers over Chichijima Island in the western North Pacific: An outflow region of Asian aerosols. J. Geophys. Res. Atmos. 2015, 120, 4155–4168. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Zhuang, G.; Sun, Y.; Wang, Q.; Chen, J.; Ren, L.; Yang, F.; Wang, Z.; Pan, X.; Li, X.; et al. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. Atmos. Environ. 2016, 130, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Engling, G.; Lee, J.J.; Tsai, Y.W.; Lung, S.C.C.; Chou, C.C.K.; Chan, C.Y. Size-Resolved Anhydrosugar Composition in Smoke Aerosol from Controlled Field Burning of Rice Straw. Aerosol Sci. Technol. 2009, 43, 662–672. [Google Scholar] [CrossRef]
- Hennigan, C.J.; Sullivan, A.P.; Collett, J.L., Jr.; Robinson, A.L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, D.; Tilgner, A.; Iinuma, Y.; Herrmann, H. Atmospheric Stability of Levoglucosan: A Detailed Laboratory and Modeling Study. Environ. Sci. Technol. 2010, 44, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Mochida, M.; Kawamura, K.; Fu, P.; Takemura, T. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmos. Environ. 2010, 44, 3511–3518. [Google Scholar] [CrossRef] [Green Version]
- Prat, H. Regarding the relations existing between the gradient of resistence to heat, maturation and hydration of plant tissues. C. R. Hebd. Seances Acad. Sci. 1944, 218, 518–519. [Google Scholar]
- Sinha, A.; Gupta, S.R.; Rana, R.S. Effects of osmotic tension and salt stress on germination of 3 grass species. Plant Soil 1982, 69, 13–19. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Bi, X.; Sheng, G.; Fu, J. Composition and source of saccharides in aerosols in Guangzhou, China. Chin. Sci. Bull. 2009, 54, 4500–4506. [Google Scholar] [CrossRef]
- Bauer, H.; Claeys, M.; Vermeylen, R.; Schueller, E.; Weinke, G.; Berger, A.; Puxbaum, H. Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos. Environ. 2008, 42, 588–593. [Google Scholar] [CrossRef]
- Pringle, A.; Patek, S.N.; Fischer, M.; Stolze, J.; Money, N.P. The captured launch of a ballistospore. Mycologia 2005, 97, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Miguel, A.G.; Taylor, P.E.; House, J.; Glovsky, M.M.; Flagan, R.C. Meteorological influences on respirable fragment release from Chinese elm pollen. Aerosol Sci. Technol. 2006, 40, 690–696. [Google Scholar] [CrossRef]
- Porter, W.M.; Robson, A.D.; Abbott, L.K. Field Survey of the Distribution of Vesicular Arbuscular Mycorrhizal Fungi in Relation to Soil-pH. J. Appl. Ecol. 1987, 24, 659–662. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Z.M.; Chen, Y.Y.; Chen, Z.L.; Xu, S.Y. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 2013, 68, 221–229. [Google Scholar] [CrossRef]
- Ouyang, Y. China wakes up to the crisis of air pollution. Lancet Respir. Med. 2013, 1, 12. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhou, C.S.; Wang, Z.B.; Feng, K.S.; Hubacek, K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J. Clean. Prod. 2017, 142, 1800–1809. [Google Scholar] [CrossRef]
- Han, T.; Qiao, L.; Zhou, M.; Qu, Y.; Du, J.; Liu, X.; Lou, S.; Chen, C.; Wang, H.; Zhang, F.; et al. Chemical and optical properties of aerosols and their interrelationship in winter in the megacity Shanghai of China. J. Environ. Sci. 2015, 27, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.L.; Zhuang, G.S.; Tang, A.H.; Wang, Y.; An, Z.S. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, L.; Hoa, L.P.; Lyu, Y.; Xu, T.T.; Yang, X.; Iinuma, Y.; Chen, J.M.; Herrmann, H. Size distribution of particle-phase sugar and nitrophenol tracers during severe urban haze episodes in Shanghai. Atmos. Environ. 2016, 145, 115–127. [Google Scholar] [CrossRef]
- Zhong, X.; Qi, J.; Li, H.; Dong, L.; Gao, D. Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos. Environ. 2016, 140, 506–513. [Google Scholar] [CrossRef]
- Behera, S.N.; Cheng, J.; Huang, X.; Zhu, Q.; Liu, P.; Balasubramanian, R. Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements. Atmos. Environ. 2015, 122, 259–271. [Google Scholar] [CrossRef]
- Li, R.; Yang, X.; Fu, H.; Hu, Q.; Zhang, L.; Chen, J. Characterization of typical metal particles during haze episodes in Shanghai, China. Chemosphere 2017, 181, 259–269. [Google Scholar] [CrossRef] [PubMed]
Components | Spring | Summer | Autumn | Winter | ||||
---|---|---|---|---|---|---|---|---|
Range | Average | Range | Average | Range | Average | Range | Average | |
levoglucosan | 5.3–142.7 | 66.0 | 2.4–195.9 | 46.5 | 8.3–823.6 | 165.7 | 66.0–1064.1 | 392.2 |
mannosan | 1.1–29.1 | 13.4 | 0.5–40.8 | 9.7 | 0.7–210.2 | 26.9 | 21.3–343.3 | 126.5 |
Total burning | 6.4–171.8 | 79.4 | 2.9–236.8 | 56.2 | 6.9–858.0 | 192.6 | 87.3–1407.4 | 518.7 |
fructose | 3.4–36.1 | 19.2 | 1.2–189.9 | 35.5 | 7.9–194.4 | 37.3 | 4.1–144.9 | 36.3 |
glucose | 2.0–13.0 | 6.9 | 0.6–56.1 | 14.9 | 1.4–41.6 | 9.4 | 1.8–31.2 | 12.7 |
arabitol | 0.8–17.6 | 5.4 | 0.4–58.9 | 14.9 | 1.1–46.2 | 8.7 | 1.7–33.4 | 7.3 |
mannitol | 3.0–88.1 | 25.3 | 4.2–706.5 | 172.7 | 3.8–64.6 | 24.7 | 5.8–96.6 | 36.8 |
sorbitol | n.d. | n.d. | 0.1–15.1 | 2.7 | 0.3–6.3 | 2.5 | 1.3–241.4 | 72.1 |
Total biological | 7.8–153.9 | 53.7 | 6.5–1026.5 | 211.4 | 14.6–240.7 | 78.2 | 4.0–421.5 | 165.2 |
Total saccharides | 23.7–310.3 | 133.1 | 9.4–1263.3 | 267.5 | 23.6–982.1 | 265.1 | 116.8–1652.9 | 674.4 |
PM2.5 | 46.5–287.3 | 94.5 | 22.6–205.3 | 62.8 | 68.2–208.0 | 120.8 | 56.9–416.5 | 155.9 |
TS/PM2.5 | 0.04–0.3% | 0.1% | 0.03–0.8% | 0.3% | 0.03–0.5% | 0.2% | 0.06–1.5% | 0.5% |
Sampling Sites | Site Type | Sampling Time | Particle Type | Concentration Range (ng/m3) | Reference |
---|---|---|---|---|---|
MS, Bologna, Italy | Urban | June 2012–May 2013 | PM2.5 | 6.2 (0.6–16.4) | [32] |
San Pietro Capofiume, Italy | Rural | June 2012–May 2013 | PM2.5 | 38.8 (0.9–200.4) | |
Rajim, India | Rural | October–November | PM2.5 | 10166 (4781.1–17979) | [33] |
Pingtung, Taiwan | Remote coastal environment (140 mfrom the seashore) | February–April 2013 | PM2.5 | 589.5 | [17] |
Tsinghua University, Beijing | Urban | November 2010–October 2011 | PM2.5 | 600.0 (66.1–389.1) | [34] |
Fudan, Shanghai | urban | March 2013–January 2014 | PM2.5 | 346.9 (9.4–1652.9) | This study |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, M.; Wang, Q.; Qin, X.; Yu, G.; Deng, C. Composition, Sources, and Distribution of PM2.5 Saccharides in a Coastal Urban Site of China. Atmosphere 2018, 9, 274. https://doi.org/10.3390/atmos9070274
Xiao M, Wang Q, Qin X, Yu G, Deng C. Composition, Sources, and Distribution of PM2.5 Saccharides in a Coastal Urban Site of China. Atmosphere. 2018; 9(7):274. https://doi.org/10.3390/atmos9070274
Chicago/Turabian StyleXiao, Mengxin, Qiongzhen Wang, Xiaofei Qin, Guangyuan Yu, and Congrui Deng. 2018. "Composition, Sources, and Distribution of PM2.5 Saccharides in a Coastal Urban Site of China" Atmosphere 9, no. 7: 274. https://doi.org/10.3390/atmos9070274
APA StyleXiao, M., Wang, Q., Qin, X., Yu, G., & Deng, C. (2018). Composition, Sources, and Distribution of PM2.5 Saccharides in a Coastal Urban Site of China. Atmosphere, 9(7), 274. https://doi.org/10.3390/atmos9070274