Response of the Meltwater Erosion to Runoff Energy Consumption on Loessal Slopes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Equation and Data Analysis
3. Results
3.1. Characteristics of the Soil Erosion Process and Eroded Rill
3.2. Variation of the Runoff Energy Consumption over Unfrozen, Shallow-Thawed, and Frozen Slopes
3.2.1. Variation of the Runoff Energy Consumption
3.2.2. Spatial Distribution of Runoff Energy Consumption
3.3. Relationship between the Soil Erosion Rate and Runoff Energy Consumption
4. Discussion
4.1. Effect of the Freeze and Flow Rate on the Runoff Energy Consumption and Sediment Transport
4.2. Prediction of the Spatial Distribution of Sediment Depending on the Runoff Energy Consumption
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FT | Freeze-Thaw |
UF | Unfrozen |
ST | Shallow-Thawed |
F | Frozen |
References
- Shi, H.; Shao, M. Soil and water loss from the loess plateau in China. J. Arid Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef]
- Tang, K.L. Soil Erosion in the Loess Plateau. Soil and Water Conservation in China; Chinese Science Press: Beijing, China, 2004; pp. 194–207. (In Chinese) [Google Scholar]
- Xiao, H.; Liu, G.; Liu, P.; Zheng, F.; Zhang, J.; Hu, F. Response of soil erosion rate to the hydraulic parameters of concentrated flow on steep loessial slopes on the Loess Plateau of China. Hydrol. Process. 2017, 31, 2613–2621. [Google Scholar] [CrossRef]
- Wang, S.J. Characteristics of freeze and thaw weathering and its contribution to sediment yield in middle Yellow River Basin. Bull. Soil Water Conserv. 2004, 24, 1–5. (In Chinese) [Google Scholar]
- Li, Q.; Liu, G.B.; Xu, M.X.; Sun, H.; Zhang, Z.; Gao, L.Q. Effect of seasonal freeze-thaw on soil anti-scouribility and its related physical property in hilly loess plateau. Trans. Chin. Soc. Agric. Eng. 2013, 29, 105–112. (In Chinese) [Google Scholar]
- Wang, T.; Li, P.; Ren, Z.; Xu, G.; Li, Z.; Yang, Y.; Yao, J. Effects of freeze-thaw on soil erosion processes and sediment selectivity under simulated rainfall. J. Arid Land 2017, 9, 234–243. [Google Scholar] [CrossRef]
- Emmanuel, J.G.; Douglas, W.B.; Beth, P.S. Modern erosion rates in the High Himalayas of Nepal. Earth Planet. Sci. Lett. 2008, 267, 482–494. [Google Scholar]
- Barnes, N.; Luffman, I.; Nandi, A. Gully erosion and freeze-thaw processes in clay-rich soils, northeast Tennessee, USA. GeoResJ 2016, 9, 67–76. [Google Scholar] [CrossRef]
- Zhang, B.; Xiong, D.; Zhang, G.; Zhang, S.; Wu, H.; Yang, D.; Xiao, L.; Dong, Y.; Su, Z.; Lu, X. Impacts of headcut height on flow energy, sediment yield and surface landform during bank gully erosion processes in the Yuanmou Dry-hot Valley region, southwest China. Earth Surf. Process. Landf. 2018, 43, 2271–2282. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Oostwoud Wijdenes, D.; Gyssels, G. Shortterm bank gully retreat rates in Mediterranean environments. Catena 2001, 44, 133–161. [Google Scholar] [CrossRef]
- Chaplot, V.; Brown, J.; Dlamini, P.; Eustice, T.; Janeau, J.-L.; Jewitt, G.; Lorentz, S.; Martin, L.; Nontokozo-Mchunu, C.; Oakes, E.; et al. Rainfall simulation to identify the storm-scale mechanisms of gully bank retreat. Agric. Water Manag. 2011, 98, 1704–1710. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V. Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology 2013, 186, 1–11. [Google Scholar] [CrossRef]
- Bernatek-Jakiel, A.; Wrońska-Wałach, D. Impact of piping on gully development in mid-altitude mountains under a temperate climate: A dendrogeomorphological approach. Catena 2018, 165, 320–332. [Google Scholar] [CrossRef]
- Fox, G.A.; Willson, G.V. The role of subsurface flow in hillslope and stream bank erosion: A review. Soil Sci. Soc. Am. J. 2010, 74, 717–733. [Google Scholar] [CrossRef]
- Sofia, G.; Di Stefano, C.; Ferro, V.; Tarolli, P. Morphological Similarity of channels: from linear erosional features (Rill, Gully) to Alpine rivers. Land Degrad. Dev. 2017, 28, 1717–1728. [Google Scholar] [CrossRef]
- Wells, R.R.; Momm, H.G.; Bennett, S.J.; Gesch, K.R.; Dabney, S.M.; Cruse, R.; Wilson, G.V. A measurement method for rill and ephemeral gully erosion assessments. Soil. Sci. Soc. Am. J. 2016, 80, 203–214. [Google Scholar] [CrossRef]
- Chen, X.Y.; Huang, Y.H.; Zhao, Y.; Ma, B.; Mi, H.X. Comparison of loess and purple rill erosions measured with volume replacement method. J. Hydrol. 2015, 530, 476–483. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Palmeri, V.; Pampalone, V. Flow resistance equation for rills. Hydrol. Process. 2017, 31, 2793–2801. [Google Scholar] [CrossRef]
- Tian, P.; Xu, X.; Pan, C.; Hsu, K.; Yang, T. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes. J. Hydrol. 2017, 548, 24–39. [Google Scholar] [CrossRef]
- Gatto, L.W. Soil freeze–thaw-induced changes to a simulated rill: Potential impacts on soil erosion. Geomorphology 2000, 32, 147–160. [Google Scholar] [CrossRef]
- Shen, H.; Zheng, F.; Wen, L.; Lu, J.; Jiang, Y. An experimental study of rill erosion and morphology. Geomorphology 2015, 231, 193–201. [Google Scholar] [CrossRef]
- Zhang, P.; Yao, W.; Tang, H.; Wei, G.; Wang, L. Laboratory investigations of rill dynamics on soils of the Loess Plateau of China. Geomorphology 2017, 293, 201–210. [Google Scholar] [CrossRef]
- Qin, C.; Zheng, F.; Wells, R.R.; Xu, X.; Wang, B.; Zhong, K. A laboratory study of channel sidewall expansion in upland concentrated flows. Soil Tillage Res. 2018, 178, 22–31. [Google Scholar] [CrossRef]
- Cerdan, O.; Le Bissonnais, Y.; Couturier, A.; Bourennane, H.; Souchère, V. Rill erosion on cultivated hillslopes during two extreme rainfall events in Normandy, France. Soil Tillage Res. 2002, 67, 99–108. [Google Scholar] [CrossRef]
- Bruno, C.; Di Stefano, C.; Ferro, V. Field investigation on rilling in the experimental Sparacia area, South Italy. Earth Surf. Process. Landf. 2008, 33, 263–279. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Shen, N.; Chen, H. Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 2016, 535, 473–479. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lei, T.W.; Zhao, J. Estimation of the detachment rate in eroding rills in flume experiments using an REE tracing method. Geoderma 2008, 147, 8–15. [Google Scholar] [CrossRef]
- Behzadfar, M.; Sadeghi, S.H.; Khanjani, M.J.; Hazbavi, Z. Effects of rates and time of zeolite application on controlling runoff generation and soil loss from a soil subjected to a freeze-thaw cycle. Int. Soil Water Conserv. Res. 2017, 5, 95–101. [Google Scholar] [CrossRef]
- Van Klaveren, R.W. Hydraulic Erosion Resistance of Thawing Soil. Ph.D. dissertation, Washington State University, Pullman, WA, USA, 1987. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, Agriculture Handbook No. 537; US Department of Agriculture: Washington, DC, USA, 1978; pp. 5–8.
- Frame, P.A.; Burney, J.R.; Edwards, L.M. Laboratory measurements of freeze/thaw, compaction, residue, and slope effects on rill erosion. Can. Agric. Eng. 1992, 34, 143–149. [Google Scholar]
- Ban, Y.Y.; Lei, T.W.; Liu, Z.Q.; Chen, C. Comparison of rill flow velocity over frozen and thawed slopes with electrolyte tracer method. J. Hydrol. 2016, 534, 630–637. [Google Scholar] [CrossRef]
- Zhang, L.T.; Gao, Z.L.; Yang, S.W.; Li, Y.H.; Tian, H.W. Dynamic processes of soil erosion by runoff on engineered landforms derived from expressway construction: A case study of typical steep spoil heap. Catena 2015, 128, 108–121. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Zhao, Y.; Mo, B.; Mi, H.; Huang, C. Analytical method for determining rill detachment rate of purple soil as compared with that of loess soil. J. Hydrol. 2017, 549, 236–243. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, L.; Fan, J.; Lu, H.; Zhu, Y.; Gu, Y.; Liang, Y. Modelling Soil Detachment of Different Management Practices in the Red Soil Region of China. Land Degrad. Dev. 2017, 28, 1496–1505. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.; Zhang, Q.; Shen, N.; Liu, J. Modelling sheet erosion on steep slopes in the loess region of China. J. Hydrol. 2017, 553, 549–558. [Google Scholar] [CrossRef]
- Karimov, V.R.; Sheshukov, A.Y. Effects of Intra-Storm Soil Moisture and Runoff Characteristics on Ephemeral Gully Development: Evidence from a No-Till Field Study. Water 2017, 9, 742. [Google Scholar] [CrossRef]
- Wirtz, S.; Seeger, M.; Ries, J.B. Field experiments for understanding and quantification of rill erosion processes. Catena 2012, 91, 21–34. [Google Scholar] [CrossRef]
- Hairsine, P.B.; Rose, C.W. Modeling water erosion due to overland-flow using physical principles. 2. Rill flow. Water Resour. Res. 1992, 28, 245–250. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S. Deriving and evaluating hydraulics and detachment models of rill erosion for some calcareous soils. Catena 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Li, Z.B.; Lu, K.X.; Ding, W.F. Experimental Study on Dynamic Processes of Soil Erosion on Loess Slope. J. Soil Water Conserv. 2002, 16, 5–7. (In Chinese) [Google Scholar]
- Cao, L.X.; Zhang, K.L.; Dai, H.L.; Guo, Z.L. Modeling soil detachment on unpaved road surfaces on the loess plateau. Trans. ASABE 2009, 54, 1377–1384. [Google Scholar] [CrossRef]
- Knapen, A.; Smets, T.; Poesen, J. Flow-retarding effects of vegetation and geotextiles on soil detachment during concentrated flow. Hydrol. Process. 2009, 23, 2427–2437. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, B.Y.; Nearing, M.A.; Huang, C.H.; Zhang, K.L. Soil detachment by shallow flow. Trans. ASAE 2002, 45, 351–357. [Google Scholar]
- Zhang, G.H.; Liu, B.Y.; Liu, G.B.; He, X.W.; Nearing, M.A. Detachment of undisturbed soil by shallow flow. Soil Sci. Soc. Am. J. 2003, 67, 713–719. [Google Scholar] [CrossRef]
- Li, P.; Li, Z.B.; Zheng, L.Y.; Lu, K.X. Comparisons of dynamic mechanics of soil erosion and sediment yield by runoff on loess slope. J. Soil Water Conserv. 2005, 19, 66–69. (In Chinese) [Google Scholar]
- Nachtergaele, J.; Poesen, J. Spatial and temporal variations in resistance of loess derived soils to ephemeral gully erosion. Eur. J. Soil Sci. 2002, 53, 449–463. [Google Scholar] [CrossRef]
- Li, Z.W.; Zhang, G.H.; Geng, R.; Wang, H.; Zhang, X.C. Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China. Catena 2015, 124, 9–17. [Google Scholar] [CrossRef]
- Li, G.; Zheng, F.; Lu, J.; Xu, X.; Hu, W.; Han, Y. Inflow rate impact on hillslope erosion processes and flow hydrodynamics. Soil Sci. Soc. Am. J. 2016, 80, 711–719. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.; Cao, L.; Zheng, X.; Ren, P.; Zhao, S. The influence of tillage practices on soil detachment in the red soil region of China. Catena 2018, 165, 272–278. [Google Scholar] [CrossRef]
- Starkloff, T.; Hessel, R.; Stolte, J.; Ritsema, C. Catchment hydrology during winter and spring and the link to soil erosion: A case study in Norway. Hydrology 2017, 4, 15. [Google Scholar] [CrossRef]
- Li, G.Y.; Fan, H.M. Effect of freeze-thaw on water stability of aggregates in a black soil of northeast China. Pedosphere 2014, 24, 285–290. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, Y.; Li, P.; Xu, G.; Shi, P.; Zhang, Y. Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau. Geoderma 2019, 334, 1–8. [Google Scholar] [CrossRef]
- Luk, S.H.; Merz, W. Use of the salt tracing technique to determine the velocity of overland flow. Soil Technol. 1992, 5, 289–301. [Google Scholar]
- Meshesha, D.T.; Tsunekawa, A.; Haregeweyn, N. Determination of soil erodibility using fluid energy method and measurement of the eroded mass. Geoderma 2016, 284, 13–21. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Dong, Y.Q.; Li, F.; Zhang, A.P.; Lei, T.W. Quantifying detachment rate of eroding rill or ephemeral gully for WEPP with flume experiments. J. Hydrol. 2014, 519, 2012–2019. [Google Scholar] [CrossRef]
- Lundberg, A.; Ala-Aho, P.; Eklo, O.; Klöve, B.; Kværner, J.; Stumpp, C. Snow and frost: Implications for spatiotemporal infiltration patterns—A review. Hydrol. Process. 2016, 30, 1230–1250. [Google Scholar] [CrossRef]
- Tsutsumi, D.; Fujita, M. Field observations, experiments, and modeling of sediment production from freeze and thaw action on a bare, weathered granite slope in a temperate region of Japan. Geomorphology 2016, 267, 37–47. [Google Scholar] [CrossRef]
- Moghadas, S.; Gustafsson, A.M.; Viklander, P.; Marsalek, J.; Viklander, M. Laboratory study of infiltration into two frozen engineered (sandy) soils recommended for bioretention. Hydrol. Process. 2016, 30, 1251–1264. [Google Scholar] [CrossRef]
- Ban, Y.Y.; Lei, T.W.; Liu, Z.Q.; Chen, C. Comparative study of erosion processes of thawed and non-frozen soil by concentrated meltwater flow. Catena 2017, 148, 153–159. [Google Scholar] [CrossRef]
- Giménez, R.; Planchon, O.; Silvera, N.; Govers, G. Longitudinal velocity patterns and bed morphology interaction in a rill. Earth Surf. Process. Landf. 2004, 29, 105–114. [Google Scholar] [CrossRef]
- Alberto, A.; St-Hilaire, A.; Courtenay, S.C.; Van Den Heuvel, M.R. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada. Environ. Monit. Assess. 2016, 188, 415. [Google Scholar] [CrossRef] [PubMed]
Flow Rate/L·min−1 | Shallow-Thawed/Unfrozen | Frozen/Unfrozen |
---|---|---|
1 | 4.48 | 6.96 |
2 | 2.05 | 4.09 |
4 | 2.72 | 2.54 |
Mean | 3.08 | 4.53 |
Flow Rate/L·min−1 | Unfrozen | Shallow-Thawed | Frozen | ||||||
---|---|---|---|---|---|---|---|---|---|
Number | Length | Mean Width | Number | Length | Mean Width | Number | Length | Mean Width | |
1 | 4 | 78.57 | 4.26 | 3 | 85.71 | 2.24 | 2 | 200.75 | 2.37 |
2 | 1 | 105.71 | 5.29 | 1 | 135.71 | 3.01 | 1 | 202.85 | 3.47 |
4 | 1 | 153.14 | 6.13 | 1 | 192.86 | 6.62 | 1 | 201.43 | 3.98 |
Flow Rate/L·min−1 | Energy Consumption/J·min−1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unfrozen | Shallow-Thawed | Frozen | ||||||||||
Max | Min | Range | Average | Max | Min | Range | Average | Max | Min | Range | Average | |
1 | 5.12 | 5.08 | 0.04 | 5.09 | 5.10 | 5.03 | 0.07 | 5.07 | 5.07 | 5.03 | 0.04 | 5.05 |
2 | 10.24 | 10.12 | 0.12 | 10.19 | 10.16 | 10.08 | 0.08 | 10.11 | 10.16 | 9.82 | 0.34 | 9.99 |
4 | 20.63 | 20.21 | 0.42 | 20.47 | 20.54 | 20.11 | 0.44 | 20.38 | 20.55 | 19.98 | 0.57 | 20.32 |
Flow Rate/L·min−1 | Unfrozen | Shallow-Thawed | Frozen | ||||||
---|---|---|---|---|---|---|---|---|---|
Max. | Min. | Range | Max. | Min. | Range | Max. | Min. | Range | |
1 | 41 | 7 | 34 | 52 | 8 | 44 | 27 | 23 | 4 |
2 | 46 | 6 | 40 | 45 | 5 | 40 | 26 | 24 | 2 |
4 | 48 | 8 | 40 | 39 | 14 | 25 | 28 | 23 | 5 |
Flow Rate/L·min−1 | A | B | ||||
---|---|---|---|---|---|---|
Unfrozen | Shallow-Thawed | Frozen | Unfrozen | Shallow-Thawed | Frozen | |
1 | 2.65 | 4.7 | 6.35 | 4.01 | 3.87 | 3.82 |
2 | 2.85 | 4.55 | 6.4 | 8.95 | 8.78 | 8.59 |
4 | 2.85 | 7.95 | 6.3 | 18.68 | 18.61 | 18.36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, P.; Hou, J.; Li, Z.; Ren, Z.; Cheng, S.; Xu, G.; Su, Y.; Wang, F. Response of the Meltwater Erosion to Runoff Energy Consumption on Loessal Slopes. Water 2018, 10, 1522. https://doi.org/10.3390/w10111522
Wang T, Li P, Hou J, Li Z, Ren Z, Cheng S, Xu G, Su Y, Wang F. Response of the Meltwater Erosion to Runoff Energy Consumption on Loessal Slopes. Water. 2018; 10(11):1522. https://doi.org/10.3390/w10111522
Chicago/Turabian StyleWang, Tian, Peng Li, Jingming Hou, Zhanbin Li, Zongping Ren, Shengdong Cheng, Guoce Xu, Yuanyi Su, and Feichao Wang. 2018. "Response of the Meltwater Erosion to Runoff Energy Consumption on Loessal Slopes" Water 10, no. 11: 1522. https://doi.org/10.3390/w10111522
APA StyleWang, T., Li, P., Hou, J., Li, Z., Ren, Z., Cheng, S., Xu, G., Su, Y., & Wang, F. (2018). Response of the Meltwater Erosion to Runoff Energy Consumption on Loessal Slopes. Water, 10(11), 1522. https://doi.org/10.3390/w10111522