Analysis of Precipitation Extremes in the Source Region of the Yangtze River during 1960–2016
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data and Quality Control
2.3. Extreme Precipitation Indices (EPIs)
2.4. Statistical Analysis
3. Results
3.1. Changes in Annual Precipitation Extremes
3.1.1. Intensity Indices
3.1.2. Frequency and Duration Indices
3.2. Changes in Seasonal Precipitation Extremes
3.3. Analysis of Correlations of Precipitation Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-1-107-02506-6. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Können, G.P. Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–99. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.C.; Zhang, X.; Brunet-India, M.; Vázquez-Aguirre, J.L. Changes in North American extremes derived from daily weather data. J. Geophys. Res. 2008, 113, D07113. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, Y. Changes of precipitation extremes in arid Central Asia. Quat. Int. 2017, 436, 16–27. [Google Scholar] [CrossRef]
- Donat, M.G.; Peterson, T.C.; Brunet, M.; King, A.D.; Almazroui, M.; Kolli, R.K.; Boucherf, D.; Al-Mulla, A.Y.; Nour, A.Y.; Aly, A.A.; et al. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol. 2014, 34, 581–592. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Pepin, N.; Flügel, W.-A.; Yan, Y.; Xu, Y.; Zhang, Y.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M.M.; Molanejad, M.; Sabziparvar, A.A.; SaadatAbadi, A.R.; Ranjbar, F.; Rousta, I.; et al. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor. Appl. Climatol. 2016, 126, 775–795. [Google Scholar] [CrossRef]
- Pińskwar, I.; Choryński, A.; Graczyk, D.; Kundzewicz, Z.W. Observed changes in extreme precipitation in Poland: 1991–2015 versus 1961–1990. Theor. Appl. Climatol. 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; He, D.; Hu, J.; Cao, J. Variability of extreme precipitation over Yunnan Province, China 1960–2012. Int. J. Climatol. 2015, 35, 245–258. [Google Scholar] [CrossRef]
- André Attogouinon, A.; Lawin, A.E.; M’Po, Y.N.; Houngue, R. Extreme precipitation indices trend assessment over the Upper Oueme River Valley-(Benin). Hydrology 2017, 4, 36. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Silva, L.L.; e Silva, C.M.; de Carvalho, G.G. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theor. Appl. Climatol. 2018, 1–12. [Google Scholar] [CrossRef]
- Aguilar, E.; Aziz Barry, A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; do Nascimento, D.J.; Peterson, T.C.; et al. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. 2009, 114, D02115. [Google Scholar] [CrossRef]
- Gallant, A.J.E.; Hennessy, K.J.; Risbey, J. Trends in rainfall indices for six Australian regions: 1910–2005. Aust. Meteorol. Mag. 2007, 56, 18. [Google Scholar]
- Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciação, Y.M.T.; Baez, J.; Barros, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G.; et al. Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J. Clim. 2006, 19, 1490–1512. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.; Wang, B. Changes in precipitation extremes in Southeastern Tibet, China. Quat. Int. 2015, 380–381, 49–59. [Google Scholar] [CrossRef]
- Pan, B.; Li, J.; Chen, F. Qinghai-Tibetan Plateau: a driver and amplifier of the global climate change III. The effects of the uplift of Qinghai-Tibetan Plateau on climate changes. J Lanzhou Univ Nat Sci 1996, 32, 108–115. (In Chinese) [Google Scholar]
- Feng, S.; Tang, M.; Wang, D. New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China. Chin. Sci. Bull. 1998, 43, 1745–1749. (In Chinese) [Google Scholar] [CrossRef]
- Liang, X.; Yang, M.; Wan, G.; Wang, X.; Li, Q. Research on the homogeneity of air temperature series over Tibetan Plateau. J. Glaciol. Geocryol. 2015, 37, 275–285. [Google Scholar] [CrossRef]
- Qin, D.; Zhang, J.; Shan, C.; Song, L. China National Assessment Report on Risk Management and Adaptation of Climate Extremes and Disasters (Refined Edition); Science Press: Beijing, China, 2015; ISBN 978-7-03-043485-2. (In Chinese) [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC, 2013: Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-1-107-05799-1. [Google Scholar]
- Du, Y.; Berndtsson, R.; An, D.; Zhang, L.; Hao, Z.; Yuan, F. Hydrologic response of climate change in the Source Region of the Yangtze River, based on water balance analysis. Water 2017, 9, 115. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, S.; Yan, Y. Characteristics of spatial and temporal variations of monthly mean surface air temperature over Qinghai-Tibet Plateau. Chin. Geogr. Sci. 2006, 16, 351–358. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, W. Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau. Environ. Monit. Assess. 2018, 190, 368. [Google Scholar] [CrossRef] [PubMed]
- Farrington, J.D. Impacts of Climate Change on the Yangtze Source Region and Adjacent Areas: Qinghai-Tibet Plateau, China; China Meteorological Press: Beijing, China, 2010; ISBN 978-7-5029-4602-9. [Google Scholar]
- Wan, G.; Yang, M.; Liu, Z.; Wang, X.; Liang, X. The precipitation variations in the Qinghai-Xizang (Tibetan) Plateau during 1961–2015. Atmosphere 2017, 8, 80. [Google Scholar] [CrossRef]
- Qu, B.; Lv, A.; Jia, S.; Zhu, W. Daily precipitation changes over large river basins in China, 1960–2013. Water 2016, 8, 185. [Google Scholar] [CrossRef]
- Liang, C.; Hou, X.; Pan, N. Spatial and temporal variations of precipitation and runoff in the source region of the Yangtze River. South-to-North Water Divers. Water Sci. Technol. 2011, 9, 53–59. (In Chinese) [Google Scholar] [CrossRef]
- Qi, D.; Zhang, S.; Li, Y. Research progress on variations of the climate and water resources in the source region of the Yangtze River. Plateau Mt. Meteorol. Res. 2013, 33, 8996. (In Chinese) [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Yang, X.; Hao, Y.; Guo, H.; Kossi, F.; Xin, Z.; Wei, W.; Zhang, Z.; Zhang, X.; et al. Analysis of precipitation extremes in the Qinghai-Tibetan Plateau, China: spatio-temporal characteristics and topography effects. Atmosphere 2017, 8, 127. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, F.; Zhang, X.; Wang, B. Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River Basin, China. Int. J. Climatol. 2017, 37, 1282–1298. [Google Scholar] [CrossRef]
- Cao, L.; Pan, S. Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960–2012. Quat. Int. 2014, 321, 105–115. [Google Scholar] [CrossRef]
- Qian, K.; Wang, X.-S.; Lv, J.; Wan, L. The wavelet correlative analysis of climatic impacts on runoff in the source region of Yangtze River, in China. Int. J. Climatol. 2014, 34, 2019–2032. [Google Scholar] [CrossRef]
- Dataset of Daily Climate Data from Chinese Surface Stations (V3.0). Available online: http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html (accessed on 22 May 2017). (In Chinese).
- Yan, Z.; Li, Z.; Xia, J. Homogenization of climate series: The basis for assessing climate changes. Sci. China Earth Sci. 2014, 57, 2891–2900. [Google Scholar] [CrossRef]
- ETCCDI/CRD Climate Change Indices: Software. Available online: http://etccdi.pacificclimate.org/software.shtml (accessed on 12 May 2017).
- Zhang, X.; Yang, F. RClimDex (1.0) User Manual. 2004. Available online: http://etccdi.pacificclimate.org/RClimDex/RClimDexUserManual.doc (accessed on 12 May 2017).
- Wang, X.; Chen, H.; Wu, Y.; Feng, Y.; Pu, Q. New techniques for the detection and adjustment of shifts in daily precipitation data series. J. Appl. Meteorol. Climatol. 2010, 49, 2416–2436. [Google Scholar] [CrossRef]
- Wang, X. Accounting for autocorrelation in detecting mean shifts in climate data series using the penalized maximal t or F test. J. Appl. Meteorol. Climatol. 2008, 47, 2423–2444. [Google Scholar] [CrossRef]
- Wang, X.; Yang, F. RHtests_dlyPrcp User Manual. Available online: http://etccdi.pacificclimate.org/RHtest/RHtests_dlyPrcp_UserManual_10Dec2014.pdf (accessed on 12 May 2017).
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Caesar, J. Global land-based datasets for monitoring climatic extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef]
- ETCCDI/CRD Climate Change Indices: Definitions of the 27 Core Indices. Available online: http://etccdi.pacificclimate.org/list_27_indices.shtml (accessed on 12 May 2017).
- New Two-Tier Approach on “Climate Normals”. Available online: https://public.wmo.int/en/media/news/new-two-tier-approach-%E2%80%9Cclimate-normals%E2%80%9D (accessed on 13 August 2017).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin & Company Limited: London, UK, 1970; ISBN 0-85264-199-0. [Google Scholar]
- Wang, W.; Shao, Q.; Yang, T.; Peng, S.; Yu, Z.; Taylor, J.; Xing, W.; Zhao, C.; Sun, F. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 401–421. [Google Scholar] [CrossRef]
- Kivinen, S.; Rasmus, S.; Jylhä, K.; Laapas, M. Long-term climate trends and extreme events in Northern Fennoscandia (1914–2013). Climate 2017, 5, 16. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, X.; Tao, J.; Shen, Q. The checking and removing of the autocorrelation in climatic time series. J. Appl. Meteorol. Sci. 2008, 19, 47–52. (In Chinese) [Google Scholar]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression. II. Biometrika 1951, 38, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Wilby, R.L.; Wedgbrow, C.S.; Fox, H.R. Seasonal predictability of the summer hydrometeorology of the River Thames, UK. J. Hydrol. 2004, 295, 1–16. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Cracknell, A.P.; Yusop, Z. Changes in precipitation extremes over the Kelantan River Basin, Malaysia. Int. J. Climatol. 2017, 37, 3780–3797. [Google Scholar] [CrossRef]
- Buishand, T.A.; Martino, G.D.; Spreeuw, J.N.; Brandsma, T. Homogeneity of precipitation series in the Netherlands and their trends in the past century. Int. J. Climatol. 2013, 33, 815–833. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory (Wiley Series in Telecommunications; 6. Print); Wiley: New York, NY, USA, 1991; pp. 12–39. ISBN 978-0-471-06259-2. [Google Scholar]
- Paninski, L. Estimation of entropy and mutual information. Neural Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef]
- Everitt, B.S. The Analysis of Contingency Tables; Chapman and Hall/CRC; CRC Press: Florida, FL, USA, 1992; pp. 37–59. ISBN 978-1-4822-2125-1. [Google Scholar]
- Huang, J.; Li, Q. Statistical Analysis Methods of the Meteorological Data; Meteorological Press: Beijing, China, 2015; pp. 28–37. ISBN 978-7-5029-5792-6. (In Chinese) [Google Scholar]
- Chen, Y.; Deng, H.; Li, B.; Li, Z.; Xu, C. Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quat. Int. 2014, 336, 35–43. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Lin, W.; Chen, X. Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int. J. Climatol. 2016, 36, 2866–2885. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; Wang, B.; Sun, M.; Li, X. Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat. Int. 2013, 313–314, 110–117. [Google Scholar] [CrossRef]
- Yan, G.; Qi, F.; Wei, L.; Aigang, L.; Yu, W.; Jing, Y.; Aifang, C.; Yamin, W.; Yubo, S.; Li, L.; Qianqian, M. Changes of daily climate extremes in Loess Plateau during 1960–2013. Quat. Int. 2015, 371, 5–21. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, S.; Ma, Q.; Li, X.; Pan, S. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quat. Int. 2013, 298, 141–151. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, Z.; Huang, H.; Liu, G.; Wu, S. Statistical estimation of the impacts of glaciers and climate change on river runoff in the headwaters of the Yangtze River. Quat. Int. 2014, 336, 89–97. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, X.; Qin, N.; Wang, Q.; Feng, S.; Zhaxi, C.; Wang, X. Characteristics of climate change in the South of Qinghai in past more than 40 years. J. Desert Res. 2005, 25, 529–534. (In Chinese) [Google Scholar]
- Chen, Y.; Zhang, Q.; Xiao, M.; Singh, V.; Leung, Y.; Jiang, L. Precipitation extremes in the Yangtze River Basin, China: regional frequency and spatial–temporal patterns. Theor. Appl. Climatol. 2014, 116, 447–461. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional frequency analysis: An approach based on L-Moments; Cambridge University Press: Cambridge, UK, 1997; pp. 1–98. ISBN 978-0-521-01940-8. [Google Scholar]
- Liu, F.; Mao, X.; Zhang, Y.; Chen, Q.; Liu, P.; Zhao, Z. Risk analysis of snow disaster in the pastoral areas of the Qinghai-Tibet Plateau. J. Geogr. Sci. 2014, 24, 411–426. [Google Scholar] [CrossRef]
- Guo, X.; Li, L.; Liu, C.; Wang, F.; Li, B. Spatio-temporal distribution of snow disaster in Qinghai Plateau during 1961–2008. Adv. Clim. Change Res. 2010, 6, 332–337. (In Chinese) [Google Scholar]
- Tang, J.; Cao, H.; Chen, J. Changes of hydro-meteorological factors and the relationships with large-scale circulation factors in the Source Region of the Yangtze River. J. Nat. Resour. 2018, 33, 840–852. (In Chinese) [Google Scholar] [CrossRef]
- Li, L.; Li, F.; Zhu, X.; Zhang, H. Study on the evolution law of the extreme climatic events over the source region of the three rivers. J. Nat. Resour. 2007, 22, 656–663. (In Chinese) [Google Scholar]
Station Name | WMO Code | Latitude (N) | Longitude (E) | Altitude (m) | Thiessen Weight (-) | Data Missing Period |
---|---|---|---|---|---|---|
Wudaoliang | 52,908 | 35°13′ | 93°05′ | 4612.2 | 0.199 | |
Tuotuohe | 56,004 | 34°13′ | 92°26′ | 4533.1 | 0.478 | |
Qumalai | 56,021 | 34°07′ | 95°48′ | 4175.0 | 0.254 | Aug–Dec 1962 |
Yushu | 56,029 | 33°00′ | 96°58′ | 3716.9 | 0.032 | |
Qingshuihe | 56,034 | 33°48′ | 97°08′ | 4415.4 | 0.037 |
Category | Index | Descriptive name | Definition | Units |
---|---|---|---|---|
Intensity indices | PRCPTOT | Total wet-day precipitation | Annual total PRCP in wet days (RR ≥ 1 mm) | mm |
SDII | Simple daily intensity index | Annual total precipitation divided by the number of wet days | mm/day | |
RX1day | Max 1-day precipitation | Monthly or annual maximum 1-day precipitation | mm | |
RX5day | Max 5-day precipitation | Monthly or annual maximum 5-day precipitation | mm | |
R95p | Very wet-day precipitation | Annual total PRCP when RR > 95th percentile of 1961–1990 daily precipitation | mm | |
R99p | Extremely wet-day precipitation | Annual total PRCP when RR > 99th percentile of 1961–1990 daily precipitation | mm | |
Frequency indices | R1mm* | Number of wet days | Number of days per year when PRCP ≥ 1 mm | days |
R10mm | Number of heavy precipitation days | Number of days per year when PRCP ≥ 10 mm | days | |
R20mm | Number of very heavy precipitation days | Number of days per year when PRCP ≥ 20 mm | days | |
Duration indices | CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | days |
CWD | Consecutive wet days | Maximum number of consecutive days with RR ≥ 1 mm | days |
Index | Regional Trends | MK Test | Percentage of Stations with Positive Trend | Percentage of Stations with Significant Positive Trend | Percentage of Stations with Negative Trend | Percentage of Stations with Significant Negative Trend | |||
---|---|---|---|---|---|---|---|---|---|
Units | L | Z | p-Value | ||||||
Intensity indices | PRCPTOT | mm/decade | 10.90 ± 4.35 | 2.11 | 0.035 | 80% | 20% | 20% | 0% |
SDII | mm/day/decade | 0.03 ± 0.03 | 1.07 | 0.285 | 80% | 0% | 20% | 0% | |
RX1day | mm/decade | 0.16 ± 0.36 | 0.43 | 0.667 | 40% | 0% | 60% | 0% | |
RX5day | mm/decade | 0.32 ± 0.64 | 0.67 | 0.503 | 60% | 0% | 40% | 0% | |
R95p | mm/decade | 2.01 ± 1.86 | 0.92 | 0.358 | 80% | 20% | 20% | 0% | |
R99p | mm/decade | 0.69 ± 1.09 | 0.28 | 0.779 | 60% | 0% | 40% | 0% | |
Frequency indices | R1mm | days/decade | 1.87 ± 0.71 | 2.39 | 0.017 | 100% | 40% | 0% | 0% |
R10mm | days/decade | 0.39 ± 0.15 | 1.91 | 0.056 | 80% | 20% | 20% | 0% | |
R20mm | days/decade | 0.03 ± 0.04 | 0.25 | 0.803 | 40% | 0% | 60% | 0% | |
Duration indices | CDD | days/decade | −5.70 ± 2.27 | −2.88 | 0.004 | 0% | 0% | 100% | 20% |
CWD | days/decade | 0.02 ± 0.13 | 0.74 | 0.459 | 40% | 0% | 60% | 0% |
Index | Wudaoliang | Tuotuohe | Qumalai | Yushu | Qingshuihe | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | Z | p-Value | L | Z | p-Value | L | Z | p-Value | L | Z | p-Value | L | Z | p-Value | |
PRCPTOT | 18.85 ± 4.20 | 3.76 | 0.0002 | 10.58 ± 5.66 | 1.56 | 0.119 | 7.92 ± 5.39 | 1.33 | 0.184 | −0.97 ± 6.00 | −0.20 | 0.841 | 6.51 ± 5.41 | 1.04 | 0.298 |
SDII | 0.1 ± 0.05 | 1.78 | 0.075 | 0.02 ± 0.05 | 0.30 | 0.764 | 0.01 ± 0.04 | 0.74 | 0.459 | −0.10 ± 0.05 | −1.87 | 0.061 | 0.02 ± 0.05 | 0.60 | 0.549 |
RX1day | 0.44 ± 0.55 | 0.92 | 0.358 | −0.27 ± 0.63 | −0.62 | 0.535 | 0.84 ± 0.49 | 1.35 | 0.177 | −0.25 ± 0.42 | −1.10 | 0.271 | −0.20 ± 0.68 | −0.07 | 0.944 |
RX5day | 1.76 ± 1.17 | 1.78 | 0.075 | −0.41 ± 1.03 | −0.22 | 0.826 | 0.67 ± 0.89 | 0.73 | 0.337 | −1.38 ± 0.93 | −1.84 | 0.066 | 1.25 ± 1.13 | 0.94 | 0.347 |
R95p | 7.71 ± 3.08 | 2.23 | 0.026 | 0.54 ± 2.85 | 0.08 | 0.936 | 0.98 ± 2.74 | 0.48 | 0.631 | −2.80 ± 3.36 | −0.86 | 0.39 | 1.70 ± 3.75 | 0.03 | 0.976 |
R99p | 2.92 ± 2.07 | 1.23 | 0.219 | −1.42 ± 1.67 | −0.74 | 0.459 | 3.08 ± 1.90 | 1.36 | 0.174 | −1.51 ± 1.79 | −1.02 | 0.303 | 1.99 ± 2.13 | 0.84 | 0.401 |
R1mm | 2.70 ± 0.76 | 3.12 | 0.002 | 1.94 ± 0.87 | 2.23 | 0.026 | 1.31 ± 0.82 | 1.41 | 0.159 | 1.41 ± 0.79 | 1.74 | 0.082 | 0.76 ± 0.87 | 0.66 | 0.509 |
R10mm | 0.78 ± 0.19 | 3.54 | 0.0004 | 0.42 ± 0.23 | 1.06 | 0.289 | 0.16 ± 0.23 | 0.71 | 0.478 | −0.28 ± 0.32 | −1.13 | 0.258 | 0.01 ± 0.29 | 0.02 | 0.984 |
R20mm | 0.10 ± 0.08 | 1.09 | 0.276 | −0.03 ± 0.07 | −0.72 | 0.472 | 0.10 ± 0.07 | 1.09 | 0.276 | −0.01 ± 0.08 | −0.10 | 0.92 | −0.01 ± 0.09 | −0.23 | 0.818 |
CDD | −1.88 ± 3.75 | −0.30 | 0.764 | −10.58 ± 3.64 | −3.12 | 0.002 | −0.54 ± 2.63 | −0.19 | 0.849 | −2.64 ± 2.22 | −1.12 | 0.308 | −1.41 ± 1.76 | −1.18 | 0.238 |
CWD | 0.23 ± 0.16 | 1.46 | 0.144 | 0.02 ± 0.02 | 0.48 | 0.631 | −0.11 ± 0.21 | −0.24 | 0.81 | −0.10 ± 0.23 | −1.16 | 0.246 | −0.14 ± 0.24 | −0.15 | 0.881 |
Index | Season | Regional Trends | MK Test | Percentage of Stations with Positive Trend | Percentage of Stations with Significant Positive Trend | Percentage of Stations with Negative Trend | Percentage of Stations with Significant Negative Trend | ||
---|---|---|---|---|---|---|---|---|---|
Units | L | Z | p-Value | ||||||
PRCPTOT | Wet | mm/decade | 9.35 ± 4.26 | 1.95 | 0.051 | 80% | 20% | 20% | 0% |
Dry | mm/decade | 1.56 ± 0.43 | 3.42 | 0.0003 | 100% | 100% | 0% | 0% | |
RX1day | Wet | mm/decade | 0.16 ± 0.36 | 0.42 | 0.674 | 40% | 0% | 60% | 0% |
Dry | mm/decade | 0.31 ± 0.12 | 3.06 | 0.0022 | 100% | 20% | 0% | 0% | |
RX5day | Wet | mm/decade | 0.32 ± 0.64 | 0.52 | 0.603 | 60% | 0% | 40% | 0% |
Dry | mm/decade | 0.56 ± 0.17 | 3.10 | 0.002 | 100% | 80% | 0% | 0% |
Index | Season | Wudaoliang | Tuotuohe | Qumalai | Yushu | Qingshuihe | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | Z | p-Value | L | Z | p-Value | L | Z | p-Value | L | Z | p-Value | L | Z | p-Value | ||
PRCPTOT | Wet | 17.51 ± 4.09 | 3.56 | 0.0004 | 9.28 ± 5.52 | 1.37 | 0.171 | 5.73 ± 5.28 | 1.14 | 0.254 | −4.12 ± 6.02 | −0.72 | 0.472 | 2.8 ± 5.31 | 0.43 | 0.667 |
Dry | 1.29 ± 0.43 | 2.71 | 0.007 | 1.35 ± 0.45 | 3.11 | 0.002 | 1.64 ± 0.64 | 2.20 | 0.028 | 3.28 ± 1.16 | 2.44 | 0.015 | 3.70 ± 1.04 | 3.13 | 0.002 | |
RX1day | Wet | 0.44 ± 0.55 | 0.92 | 0.358 | −0.27 ± 0.63 | −0.62 | 0.535 | 0.84 ± 0.49 | 1.35 | 0.177 | −0.25 ± 0.42 | −1.10 | 0.271 | −0.20 ± 0.68 | −0.07 | 0.944 |
Dry | 0.32 ± 0.15 | 2.13 | 0.034 | 0.20 ± 0.16 | 1.90 | 0.057 | 0.44 ± 0.19 | 1.80 | 0.072 | 0.71 ± 0.32 | 1.53 | 0.126 | 0.35 ± 0.22 | 1.55 | 0.121 | |
RX5day | Wet | 1.76 ± 1.17 | 1.78 | 0.075 | −0.41 ± 1.03 | −0.22 | 0.826 | 0.67 ± 0.89 | 0.73 | 0.337 | −1.38 ± 0.93 | −1.84 | 0.066 | 1.25 ± 1.13 | 0.94 | 0.347 |
Dry | 0.61 ± 0.19 | 2.93 | 0.003 | 0.37 ± 0.23 | 1.72 | 0.085 | 0.71 ± 0.25 | 2.59 | 0.010 | 1.36 ± 0.39 | −2.84 | 0.005 | 0.98 ± 0.33 | 2.95 | 0.030 |
Indices | PRCPTOT | SDII | RX1day | RX5day | R95p | R99p | R1mm | R10mm | R20mm | CWD | CDD |
---|---|---|---|---|---|---|---|---|---|---|---|
PRCPTOT | 1 | ||||||||||
SDII | 0.68 ** | 1 | |||||||||
RX1day | 0.41 ** | 0.51 ** | 1 | ||||||||
RX5day | 0.69 ** | 0.73 ** | 0.60 ** | 1 | |||||||
R95p | 0.76 ** | 0.84 ** | 0.64 ** | 0.76 ** | 1 | ||||||
R99p | 0.36 ** | 0.47 ** | 0.83 ** | 0.57 ** | 0.59 ** | 1 | |||||
R1mm | 0.89 ** | 0.31 * | 0.23 | 0.45 ** | 0.48 ** | 0.18 | 1 | ||||
R10mm | 0.79 ** | 0.85 ** | 0.35 ** | 0.71 ** | 0.81 ** | 0.34 * | 0.53 ** | 1 | |||
R20mm | 0.34 ** | 0.51 ** | 0.73 ** | 0.52 ** | 0.63 ** | 0.85 ** | 0.14 | 0.35 ** | 1 | ||
CWD | 0.60 ** | 0.25 | 0.19 | 0.46 ** | 0.41 ** | 0.15 | 0.63 ** | 0.43 ** | 0.21 | 1 | |
CDD | −0.16 | 0.10 | 0.08 | 0.17 | −0.01 | 0.06 | −0.29 * | 0.02 | −0.01 | −0.11 | 1 |
Index | This Study | Global | China | Qinghai-Tibetan Plateau | Western Tibetan Plateau | South-Eastern Tibet | Loess Plateau | Yangtze River Basin | Yunnan Province, China | Xinjiang, NW China |
---|---|---|---|---|---|---|---|---|---|---|
PRCPTOT | 10.90 | 0.23 | 1.13 | 6.98 | 0.47 | 4.95 | 1.87 | −9.31 | ||
SDII | 0.03 | −0.07 | 0.07 | 0.08 | −0.01 | 0.06 | −0.12 | 0.11 | 0.08 | 0.04 |
RX1day | 0.16 | 0.04 | 0.50 | 0.45 | 0.37 | −0.49 | −0.22 | 1.43 | 0.40 | 0.79 |
RX5day | 0.32 | −0.31 | 0.36 | 0.50 | 1.25 | −0.28 | −0.84 | 1.50 | −0.12 | 0.85 |
R95p | 2.01 | 1.98 | 3.39 | 3.24 | 0.48 | −3.31 | −0.59 | 7.78 | 3.78 | 6.28 |
R99p | 0.69 | 1.42 | 1.77 | 1.96 | 0.41 | −2.84 | −0.25 | 6.59 | 2.30 | 3.26 |
R1mm | 1.87 | −0.31 | −0.48 | 1.12 | ||||||
R10mm | 0.39 | −0.07 | 0.004 | 0.27 | −0.06 | 0.46 | −0.03 | −0.27 | −0.38 | 0.20 |
R20mm | 0.03 | −0.03 | 0.07 | −0.11 | 0.004 | −0.11 | 0.05 | |||
CDD | −5.70 | −1.66 | −2.73 | −0.87 | −0.52 | 4.55 | −18.65 | 0.22 | 1.07 | −0.02 |
CWD | 0.02 | 0.02 | −0.14 | −0.02 | 0.17 | −0.35 | −0.009 | −0.16 | −0.37 | 0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Liang, C.; Zhao, P.; Dai, Q. Analysis of Precipitation Extremes in the Source Region of the Yangtze River during 1960–2016. Water 2018, 10, 1691. https://doi.org/10.3390/w10111691
Zhou B, Liang C, Zhao P, Dai Q. Analysis of Precipitation Extremes in the Source Region of the Yangtze River during 1960–2016. Water. 2018; 10(11):1691. https://doi.org/10.3390/w10111691
Chicago/Turabian StyleZhou, Baojia, Chuan Liang, Peng Zhao, and Qiong Dai. 2018. "Analysis of Precipitation Extremes in the Source Region of the Yangtze River during 1960–2016" Water 10, no. 11: 1691. https://doi.org/10.3390/w10111691
APA StyleZhou, B., Liang, C., Zhao, P., & Dai, Q. (2018). Analysis of Precipitation Extremes in the Source Region of the Yangtze River during 1960–2016. Water, 10(11), 1691. https://doi.org/10.3390/w10111691