Mapping and Monitoring Lakes Intra-Annual Variability in Semi-Arid Regions: A Case of Study in Patagonian Plains (Argentina)
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Processing Protocol to Delineate Water Bodies
2.2. Validation
2.3. Application
3. Results
3.1. Annual Time Series (2001–2016) of CH and MU Lakes Area
3.2. Assessment of Different Indexes and Layers Calculated and/or Obtained from MODIS Products to Calculate CH and MU Lakes Area
3.3. Aplication of MOD13Q1v6 MIR Band (b7)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in stream flow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Duan, L.; Kim, B.; Mitchell, M.J.; Shibata, H. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ. Int. 2010, 36, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Willamson, C.E.; Dodds, W.; Kratz, T.K.; Palmer, M.A. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front. Ecol. Environ. 2008, 6, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef] [Green Version]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Donk, E.V.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimoda, Y.; Azim, M.E.; Perhar, G.; Ramin, M.; Kenney, M.A.; Sadraddini, S.; Gudimov, A.; Arhonditsis, G.B. Our current understanding of lake ecosystem response to climate change: What have we really learned from the north temperate deep lakes? J. Great Lakes Res. 2011, 37, 173–193. [Google Scholar] [CrossRef]
- Mérega, J.L. El Problema de la Desertificación. In Desertificación y Sociedad Civil; Mérega, J.L., Ed.; Fundación del Sur: Buenos Aires, Argentina, 2003; Volume 1, pp. 11–16. [Google Scholar]
- Mazzoni, E.; Vazquez, M. Desertification in Patagonia. In Natural Hazards and Human-Exacerbated Disasters in Latin America; Latrubesse, E.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 17, pp. 351–377. [Google Scholar] [CrossRef]
- Peng, D.; Xiong, L.; Guo, S.; Shu, N. Study of Dongting Lake area variation and its influence on water level using MODIS data. Hydrol. Sci. J. 2005, 50, 31–44. [Google Scholar] [CrossRef]
- Soti, V.; Tran, A.; Bailly, J.S.; Puech, C.; Lo Seen, D.; Bégué, A. Assessing optical earth observation systems for mapping and monitoring temporary ponds in arid areas. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef]
- Sakamoto, T.; Van Nguyen, N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 109, 295–313. [Google Scholar] [CrossRef]
- Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Lettenmaier, D.P. Evaluation of the snow-covered area data product from MODIS. Hydrol. Process. 2003, 17, 59–71. [Google Scholar] [CrossRef]
- Lopez, P.; Sirguey, P.; Arnaud, Y.; Pouyaud, B.; Chevallier, P. Snow cover monitoring in the Northern Patagonia Icefield using MODIS satellite images (2000–2006). Glob. Planet. Chang. 2008, 61, 103–116. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; de Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Harma, P.; Vepsalainen, J.; Hannonen, T.; Pyhalahti, T.; Kamari, J.; Kallio, K.; Eloheimo, K.; Koponen, S. Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland. Sci. Total Environ. 2001, 268, 107–121. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, W.; Wang, X.; Luo, D. Application of MODIS satellite data in monitoring water quality parameters of Chaohu Lake in China. Environ. Monit. Assess. 2009, 148, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Bohn, V.Y.; Delgado, A.L.; Piccolo, M.C.; Perillo, G.M.E. Assessment of climate variability and land use effect on shallow lakes. Environ. Earth. Sci. 2016, 75, 818. [Google Scholar] [CrossRef]
- Shi, Y.F.; Ren, J.W. Glacier Recession and Lake Shrinkage Indicating a Climatic Warming and Drying Trend in Central Asia. Ann. Glaciol. 1990, 14, 261–265. [Google Scholar] [Green Version]
- Qinghua, Y.; Tandong, Y.; Feng, C.; Shichang, K.; Xueqin, Z.; Yi, W. Response of Glacier and Lake Covariations to Climate Change in Mapam Yumco Basin on Tibetan Plateau during 1974-2003. J. China Univ. Geosci. 2008, 19, 135–145. [Google Scholar] [CrossRef]
- Yan, L.; Zheng, M. The response of lake variations to climate change in the past forty years: A case study of the northeastern Tibetan Plateau and adjacent areas, China. Q. Int. 2015, 371, 31–48. [Google Scholar] [CrossRef]
- Scordo, F.; Perillo, G.M.E.; Piccolo, M.C. Effect of southern climate modes and variations in river discharge on lake surface area in Patagonia. Inland Waters 2018. accepted for publication. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLoS ONE 2014, 9, e88741. [Google Scholar] [CrossRef] [PubMed]
- Verdin, J.P. Remote sensing of ephemeral water bodies in Western Niger. Int. J. Remote Sens. 1996, 17, 733–748. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 8, 257–266. [Google Scholar] [CrossRef]
- Xu, H.Q. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote Sensing of Leaf Water Content in the Near Infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Quirós, R.; Drago, E. The environmental state of Argentinean lakes: An overview. Lakes Reserv. Res. Manag. 1999, 4, 55–64. [Google Scholar] [CrossRef]
- Valladares, A. Cuenca de los ríos Senguer y Chico; Technical Report; Subsecretaria de Recursos Hídricos de la Nación: Buenos Aires, Argentina, 2004; pp. 1–6.
- Scordo, F.; Seitz, C.; Zilio, M.; Melo, W.D.; Piccolo, M.C.; Perillo, G.M.E. Evolución de los Recursos Hídricos en el “Bajo de Sarmiento” (Patagonia Extra Andina): Impactos Naturales y Antrópico. Anu. Inst. Geociênc. 2017, 40, 106–117. [Google Scholar] [CrossRef]
- Dore, M.H.I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Compagnucci, R.H.; Araneo, D.C. Alcances de El Niño como predictor del caudal de los ríos andinos argentinos. Ing. Hidraul. Mex. 2007, 22, 23–35. (In Spanish) [Google Scholar]
- Araneo, D.C.; Compagnucci, R.H. Atmospheric circulation features associated to Argentinean Andean rivers discharge variability. Geophys. Res. Lett. 2008, 35, L01805. [Google Scholar] [CrossRef]
- Masiokas, M.; Villalba, R.; Luckman, B.; Lascano, M.; Delgado, S.; Stepanek, P. 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Glob. Planet. Chang. 2008, 60, 85–100. [Google Scholar] [CrossRef]
- Pasquini, A.I.; Lecomte, K.L.; Depetris, P.J. Climate change and recent water level variability in Patagonian proglacial lakes, Argentina. Glob. Planet. Chang. 2008, 63, 290–298. [Google Scholar] [CrossRef]
- Tejedo, A.G. Degradación de suelos en los alrededores del lago Colhué Huapí, Escalante, provincia de Chubut. In Primer Congreso de la Ciencia Cartográfica y VII Semana Nacional de la Cartografía; Centro Argentino de Cartografía: Buenos Aires, Argentina, 2003. [Google Scholar]
- Llanos, E.; Behr, S.; Gonzalez, J.; Colombani, E.; Buono, G.; Escobar, J.M. Informe de las Variaciones del Lago Colhue Huapi Mediante Sensores Remotos y su Relación con las Precipitaciones; Technical Report; Instituto Nacional de Tecnología Agropecuaria: Trelew, Argentina, 2016; pp. 1–8.
- Del Valle, H.F.; Elissalde, N.O.; Gagliardini, D.A.; Milovich, J. Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery. Arid Soil Res. Rehabil. 1998, 12, 95–121. [Google Scholar]
- Quirós, R.; Baigun, C.R.M.; Cuch, S.; Delfino, R.; De Nichilo, A.; Guerrero, C.A.; Marinone, M.C.; Menu-Marque, S.A.; Scapini, M.C. Evaluación del Rendimiento Pesquero Potencial de la República Argentina I: Datos 1; Technical Report; Departamento de Aguas Continentales, Instituto Nacional de Investigación y Desarrollo Pesquero: Mar del Plata, Argentina, 1988; pp. 1–55. [Google Scholar]
- Pedrozo, F.; Childrud, S.; Temporetti, P.; Diaz, M. Chemical composition and nutrient limitation in rivers and lakes of Northern Patagonian Andes (39.5–42° S; 71° W) (Rep. Argentina). Verh. Int. Verein. Theor. Limnol. 1993, 25, 207–214. [Google Scholar] [CrossRef]
- Diaz, M.; Pedrozo, F.; Reynolds, C.; Temporetti, P. Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 2007, 37, 17–27. [Google Scholar] [CrossRef]
- Pérez, G.L.; Torremorell, A.; Bustingorry, J.; Escaray, R.; Pérez, P.; Dieguez, M.; Zagarese, H. Optical characteristics of shallow lakes from the Pampa and Patagonia regions of Argentina. Limnologica 2010, 40, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Balseiro, E.; Modenutti, B.; Queimaliños, C.; Reissig, M. Daphnia distribution in Andean Patagonian lakes: Effect of low food quality and fish predation. Aquat. Ecol. 2007, 41, 599–609. [Google Scholar] [CrossRef]
- Callieri, C.; Modenutti, B.; Queimalinos, C.; Bertoni, R. Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: Differences in light harvesting efficiency in deep layers. Aquat. Ecol. 2007, 41, 511–523. [Google Scholar] [CrossRef]
- Izaguirre, I.; Saad, J.F. Phytoplankton from natural water bodies of the Patagonian Plateau. Advanc. Limnol. 2014, 65, 309–319. [Google Scholar] [CrossRef]
- González Díaz, E.F.; Di Tommaso, I. Paleogeoformas lacustres en los lagos Musters y Colhué Huapí, su relación genética con un paleolago Sarmiento previo, centro sur del Chubut. [Paleo lacustrine landforms in Colhué Huapí and Musters lakes, their genetic connection with a previous Sarmiento paleolake, Central-South Chubut]. Rev. Asoc. Geol. Argentina 2014, 71, 416–426. [Google Scholar]
- Bruniard, E.D. Hidrografía: Procesos y Tipos de Escurrimiento Superficial; Editorial Ceyne: Buenos Aires, Argentina, 1992; pp. 1–124. ISBN 950-9871-25-7. [Google Scholar]
- (SSRH) Subsecretaría de Recursos Hídricos de la Nación Argentina. Publicaciones Hidrometeorológicas. 2014. Available online: https://www.mininterior.gov.ar/obras-publicas/hidro-publicaciones.php (accessed on 15 December 2017).
- Coronato, A.; Mazzoni, E.; Vázquez, M.; Coronato, F. Patagonia: Una Síntesis de su Geografía Física; Universidad Nacional de la Patagonia Austral: Río Gallegos, Argentina, 2017; pp. 1–217. ISBN 978-987-3714-40-5. [Google Scholar]
- Duda, R.D.; Hart, P.E.; Stork, D.G. Pattern Classification and Scene Analysis, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1995; pp. 1–69. [Google Scholar]
- Chuvieco Salinero, E. Teledetección Ambiental. La Observación de la Tierra Desde el Espacio; Editorial Ariel S.A.: Barcelona, Spain, 2010; pp. 1–582. ISBN 8434434989. [Google Scholar]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water quality census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Reis, S.; Yilmaz, H.M. Temporal monitoring of water level changes in Seyfe lake using remote sensing. Hydrol. Proc. 2008, 22, 4448–4457. [Google Scholar] [CrossRef]
- El-Hattab, M.M. Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay). Egypt. J. Remote Sens. Space Sci. 2016, 19, 23–36. [Google Scholar] [CrossRef]
- Doña, C.; Chang, N.; Caselles, V.; Sánchez, J.M.; Pérez-Planells, L.; del Bisquert, M.M.; García-Santos, V.; Imen, S.; Camacho, A. Monitoring Hydrological Patterns of Temporary Lakes Using Remote Sensing and Machine Learning Models: Case Study of La Mancha Húmeda Biosphere Reserve in Central Spain. Remote Sens. 2016, 8, 618. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Lyons, E.A.; Sheng, Y.; Smith, L.C.; Li, J.; Hinkel, K.M.; Lenters, J.D.; Wang, J. Quantifying sources of error in multitemporal multisensor lake mapping. Int. J. Remote Sens. 2013, 34, 7887–7905. [Google Scholar] [CrossRef]
Lakes | ||
---|---|---|
Lake Features | Musters (MU) | Colhué Huapí (CH) |
Mean depth (m) | 20 * | 2 * |
Mean areal extension (km2) | 437 ** | 530 ** |
Maximum percentage of areal variation (%) | 5 * | 80 ** |
Trophic state | Mesotrophic * | Eutrophic * |
Turbidity | Middle * | High * |
MODIS Products | Index/Band | Equations ** | References |
---|---|---|---|
MOD9A1v6 | MNDWI: Modified Difference Water Index | (G + MIR (b6))/(G − MIR (b6)) | [27] |
NDWI1: Normalized Difference Water Index | (G + NIR)/(G − NIR) | [25] | |
NDWI2: Normalized Difference Water Index | (NIR + MIR (b6))/(NIR − MIR (b6)) | [26] | |
MIR *: Middle Infrared | MIR (b6) | ||
MOD13Q1v6 | NDVI *: Normalized Difference Vegetation Index | (NIR + R)/(NIR − R) | [28] |
MIR *: Middle Infrared | MIR (b7) |
Period of Lake Area | Year | Area CH (%) | Year | Area MU (%) |
---|---|---|---|---|
Increase | 2001 | 18 | 2000 | 95 |
2007 | 141 | 2003 | 104 | |
Variation | +123 | Variation | +9 | |
Decrease | 2007 | 141 | 2003 | 104 |
2016 | 47 | 2016 | 98 | |
Variation | −94 | Variation | −6 |
Mean Area (km2) | Std. Dv. (km2) | p | R2 | |||
---|---|---|---|---|---|---|
Colhué Huapí | Landsat (Scordo et al., 2018) * | RGB | 530 | 219 | ||
MOD9A1v6 | MNDWI | 527 | 201 | 0.60 | 0.99 | |
NDWI1 | 435 | 252 | 0.00 | 0.91 | ||
NDWI2 | 493 | 205 | 0.01 | 0.94 | ||
MIR (b6) | 533 | 202 | 0.74 | 0.97 | ||
MOD13Q1v6 | NDVI | 445 | 257 | 0.00 | 0.92 | |
MIR (b7) | 529 | 195 | 0.93 | 0.99 | ||
Musters | Landsat (Scordo et al., 2018) * | RGB | 437 | 9 | ||
MOD9A1v6 | MNDWI | 407 | 13 | 0.00 | 0.33 | |
NDWI1 | 423 | 9 | 0.00 | 0.76 | ||
NDWI2 | 308 | 57 | 0.00 | 0.03 | ||
MIR (b6) | 420 | 20 | 0.00 | 0.02 | ||
MOD13Q1v6 | NDVI | 429 | 13 | 0.00 | 0.78 | |
MIR (b7) | 415 | 10 | 0.00 | 0.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scordo, F.; Bohn, V.Y.; Piccolo, M.C.; Perillo, G.M.E. Mapping and Monitoring Lakes Intra-Annual Variability in Semi-Arid Regions: A Case of Study in Patagonian Plains (Argentina). Water 2018, 10, 889. https://doi.org/10.3390/w10070889
Scordo F, Bohn VY, Piccolo MC, Perillo GME. Mapping and Monitoring Lakes Intra-Annual Variability in Semi-Arid Regions: A Case of Study in Patagonian Plains (Argentina). Water. 2018; 10(7):889. https://doi.org/10.3390/w10070889
Chicago/Turabian StyleScordo, Facundo, Vanesa Y. Bohn, M. Cintia Piccolo, and Gerardo M. E. Perillo. 2018. "Mapping and Monitoring Lakes Intra-Annual Variability in Semi-Arid Regions: A Case of Study in Patagonian Plains (Argentina)" Water 10, no. 7: 889. https://doi.org/10.3390/w10070889
APA StyleScordo, F., Bohn, V. Y., Piccolo, M. C., & Perillo, G. M. E. (2018). Mapping and Monitoring Lakes Intra-Annual Variability in Semi-Arid Regions: A Case of Study in Patagonian Plains (Argentina). Water, 10(7), 889. https://doi.org/10.3390/w10070889