Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales
Abstract
:1. Introduction
2. Materials and Methods
2.1. GLDAS
2.2. UNH-GRDC
2.3. Statistical Metrics
3. Results and Discussion
3.1. Evaluation of Total Runoff
3.2. Differences in Surface and Subsurface Runoff Components
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmood, R.; Keeling, T.; Foster, S.A.; Hubbard, K.G. Did irrigation impact 20th century temperature in the High Plains aquifer region? Appl. Geogr. 2013, 38, 11–21. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Wei, J.; Dirmeyer, P.A. Toward understanding the large-scale land-atmosphere coupling in the models: Roles of different processes. Geophys. Res. Lett. 2010, 37, 351–369. [Google Scholar] [CrossRef]
- Yeh, T.; Wetherald, R.T.; Manabe, S. The effect of soil moisture on the short-term climate and hydrology change—A numerical experiment. Mon. Weather. Rev. 1984, 112, 474–490. [Google Scholar] [CrossRef]
- Kuhl, S.C.; Miller, J.R. Seasonal river runoff calculated from a global atmospheric model. Water Resour. Res. 1992, 28, 2029–2039. [Google Scholar] [CrossRef]
- Crossley, J.F.; Polcher, J.; Cox, P.M.; Gedney, N.; Planton, S. Uncertainties linked to land–surface processes in climate change simulations. Clim. Dyn. 2000, 16, 949–961. [Google Scholar] [CrossRef]
- Dan, L.; Ji, J.; Li, Y. Climatic and biological simulations in a two-way coupled atmosphere–biosphere model (CABM). Glob. Planet. Chang. 2005, 47, 153–169. [Google Scholar] [CrossRef]
- Pitman, A.J. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. 2010, 23, 479–510. [Google Scholar] [CrossRef]
- Zabel, F. Land–Atmosphere Coupling between A Land Surface Hydrological Model and A RegionalClimate Model. Ph.D. Thesis, Ludwig–Maximilians–Universität München, München, Germany, 21 June 2012. [Google Scholar]
- Kumar, S.V.; Peters-Lidard, C.D.; Tian, Y.; Houser, P.R.; Geiger, J.; Olden, S.; Lighty, L.; Eastman, J.L.; Doty, B.; Dirmeyer, P. Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Softw. 2006, 21, 1402–1415. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Yang, T.; Liang, K.; Liu, C. Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 12180–12197. [Google Scholar] [CrossRef]
- Khan, M.S.; Liaqat, U.W.; Baik, J.; Choi, M. Stand–alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric. For. Meteorol. 2018, 252, 256–268. [Google Scholar] [CrossRef]
- Kim, H.; Parinussa, R.; Konings, A.G.; Wagner, W.; Cosh, M.H.; Lakshmi, V.; Zohaib, M.; Choi, M. Global–scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote. Sens. Environ. 2018, 204, 260–275. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, W02433. [Google Scholar] [CrossRef]
- Wang, W.; Cui, W.; Wang, X.; Chen, X. Evaluation of GLDAS–1 and GLDAS–2 forcing data and Noah model simulations over China at monthly scale. J. Hydrometeorol. 2016, 17, 2815–2833. [Google Scholar] [CrossRef]
- Xiao, R.; He, X.; Zhang, Y.; Ferreira, V.G.; Chang, L. Monitoring groundwater variations from satellite gravimetry and hydrological models: A comparison with in-situ measurements in the Mid–Atlantic region of the United States. Remote. Sens. 2015, 7, 686–703. [Google Scholar] [CrossRef]
- Zaitchik, B.F.; Rodell, M.; Olivera, F. Evaluation of the global land data assimilation system using global river discharge data and a source-to-sink routing scheme. Water Resour. Res. 2010, 46, 2840–2849. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.C.; Wei, J. Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res. Atmos. 2008, 113, D17119. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J.; Liu, P.; Jambor, U.; Berg, A.; Kistler, M.; Reichle, R.; Rodell, M.; Famiglietti, J. Realistic initialization of land surface states: Impacts on subseasonal forecast skill. J. Hydrometeorol. 2004, 5, 1049–1063. [Google Scholar] [CrossRef]
- Ye, K.; Lau, N.C. Characteristics of eurasian snowmelt and its impacts on the land surface and surface climate. Clim. Dyn. 2018. [Google Scholar] [CrossRef]
- Spennemann, P.; Rivera, J.A.; Osman, M.; Saulo, C.; Penalba, O. Assessment of seasonal soil moisture forecasts over southern South America with emphasis on dry and wet events. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Spennemann, P.C.; Rivera, J.A.; Saulo, A.C.; Penalba, O.C. A comparison of GLDAS soil moisture anomalies against standardized precipitation index and multisatellite estimations over South America. J. Hydrometeorol. 2015, 16, 158–171. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Zhao, L.; Tang, W.; Han, M. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 4466–4475. [Google Scholar] [CrossRef] [Green Version]
- Mo, X.; Wu, J.J.; Wang, Q.; Zhou, H. Variations in water storage in China over recent decades from GRACE observations and GLDAS. Nat. Hazards Earth Syst. Sci. 2016, 3, 3251–3286. [Google Scholar] [CrossRef]
- Ji, L.; Senay, G.B.; Verdin, J.P. Evaluation of the global land data assimilation system (GLDAS) air temperature data products. J. Hydrometeorol. 2015, 16, 2463–2480. [Google Scholar] [CrossRef]
- Kato, H.; Rodell, M.; Beyrich, F.; Cleugh, H.; van Gorsel, E.; Liu, H.; Meyers, T.P. Sensitivity of land surface simulations to model physics, land characteristics, and forcings, at four CEOP sites. J. Meteorol. Soc. Jpn. 2007, 85A, 187–204. [Google Scholar] [CrossRef]
- Jiménez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; Mccabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.; Betts, A.K.; Dirmeyer, P.A. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. Atmos. 2011, 116, 3–25. [Google Scholar] [CrossRef]
- Ferguson, C.R.; Wood, E.F.; Vinukollu, R.K. A global intercomparison of modeled and observed land–atmosphere coupling. J. Hydrometeorol. 2012, 13, 749–784. [Google Scholar] [CrossRef]
- Rui, H.; Beaudoing, H. README Document for Global Land Data Assimilation System Version 2 (GLDAS-2) Products; Goddard Space Flight Center: Greenbelt, MD, USA, 2017. [Google Scholar]
- Derber, J.C.; Parrish, D.F.; Lord, S.J. The new global operational analysis system at the National Meteorological Center. Weather Forecast. 1991, 6, 538–547. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.-P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version–2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Bonan, G.B. The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Clim. 1998, 11, 1307–1326. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.; Wilson, M.F. Biosphere-atmosphere Transfer Scheme (BATS) NCAR Community Climate Model; National Technicalt Information Service: Alexandria, VA, USA, 1986.
- Dai, Y.; Zeng, Q. A land surface model (IAP94) for climate studies part I: Formulation and validation in off–line experiments. Advances Atmos.Sci. 1997, 14, 433–460. [Google Scholar]
- Zhao, R.-J. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Zhou, X.; Zhang, Y.; Yang, Y.; Han, S. Evaluation of anomalies in GLDAS–1996 dataset. Water Sci. Technol. 2013, 67, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Yang, Z.L.; David, C.H.; Niu, G.Y.; Rodell, M. Hydrological evaluation of the Noah–MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos. 2015, 119, 23–38. [Google Scholar] [CrossRef]
- Du, E.; Vittorio, A.D.; Collins, W.D. Evaluation of hydrologic components of community land model 4 and bias identification. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Fekete, B.M.; Voeroesmarty, C.J.; Grabs, W. Global Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances; Global Runoff Data Centre (GRDC); Federal Institute of Hydrology (BfG): Koblenz, Germany, February 2000. [Google Scholar]
- Fekete, B.M.; Vörösmarty, C.J.; Grabs, W. High–resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 2002, 16, 15-1–15-10. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Pan, M.; Wood, E.F.; Mitchell, K.E.; Houser, P.R.; Schaake, J.C.; Robock, A.; Lohmann, D.; Cosgrove, B.; Duan, Q. Snow process modeling in the north american land data assimilation system (NLDAS): 1. Evaluation of model–simulated snow cover extent. J. Geophys. Res. Atmos. 2003, 108, 2101–2110. [Google Scholar] [CrossRef]
- Zaitchik, B.F.; Rodell, M. Forward-looking assimilation of MODIS–derived snow–covered area into a land surface model. J. Hydrometeorol. 2009, 10, 130–148. [Google Scholar] [CrossRef]
- Marengo, J.A. On the hydrological cycle of the amazon basin: A historical review and current state-of-the-art. Rev. Bras. Meteorol. 2006, 21, 1–19. [Google Scholar]
Model Version | Origin | Soil Layers | Features |
---|---|---|---|
GLDAS1.0–CLM2.0 | It is primarily based on three land surface models: 1. NCAR Land Surface Model [33]; 2. Biosphere-Atmosphere Transfer Scheme (BATS; [34]); 3. LSM of the Institute of Atmospheric Physics of the Chinese Academy of Sciences [35]. | 10 layers: 0–0.018, 0.018–0.045, 0.045–0.091, 0.091–0.166, 0.166–0.289, 0.289–0.493, 0.493–0.829, 0.829–1.383, 1.383–2.296, 2.296–3.433 m | 1. A runoff parameterization following the TOPMODEL concept; 2. It was run in the water budget mode in GLDAS-1; 3. It has a snowpack module; 4. No groundwater/glacier/ice sheet/human activity modules; 5. One dimension. |
GLDAS1.0–VIC4.04 | 1. It was developed at the University of Washington and Princeton University; 2. It is a macroscale, semi-distributed, grid-based, hydrologic model. | 3 layers: 0–0.1, 0.1–1.6, 1.6–1.9 m | 1. Sub-grid heterogeneity based on the Xin’anjiang Hydrology Model [36]; 2. It was run in the water budget mode in GLDAS-1; 3. It has a snowpack module; 4. No groundwater/glacier/ice sheet/human activity modules; 5. One dimension. |
GLDAS1.0–Noah2.7 GLDAS2.1–Noah3.3 | 1. It was borne under the background of developing a LSM to be used for operations and research in NCEP weather and climate prediction models and their data assimilation systems. | 4 layers: 0.–0.1, 0.1–0.4, 0.4–1.0, 1.0–2.0 m | 1. It has been used operationally in NCEP models since 1996; 2. It has a snowpack module; 3. No groundwater/glacier/ice sheet/human activity modules; 4. One dimension. |
Land Surface Model | Globe | Northern Hemisphere | Southern Hemisphere |
---|---|---|---|
GLDAS1.0-CLM | 6.608 | 7.774 | 10.311 |
GLDAS1.0-VIC | 13.814 | 14.557 | 12.426 |
GLDAS1.0-Noah | 11.952 | 12.603 | 10.553 |
GLDAS2.1-Noah | 6.248 | 6.122 | 8.245 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, M.; Lu, H.; Yang, K.; Xu, Z.; Lv, M.; Huang, X. Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales. Water 2018, 10, 969. https://doi.org/10.3390/w10080969
Lv M, Lu H, Yang K, Xu Z, Lv M, Huang X. Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales. Water. 2018; 10(8):969. https://doi.org/10.3390/w10080969
Chicago/Turabian StyleLv, Meizhao, Hui Lu, Kun Yang, Zhongfeng Xu, Meixia Lv, and Xiaomeng Huang. 2018. "Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales" Water 10, no. 8: 969. https://doi.org/10.3390/w10080969
APA StyleLv, M., Lu, H., Yang, K., Xu, Z., Lv, M., & Huang, X. (2018). Assessment of Runoff Components Simulated by GLDAS against UNH–GRDC Dataset at Global and Hemispheric Scales. Water, 10(8), 969. https://doi.org/10.3390/w10080969