Statistical Study of Rainfall Control: The Dagum Distribution and Applicability to the Southwest of Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Distribution Functions
2.1.1. The Gumbel Distribution
2.1.2. The Log-Pearson Type III Distribution
2.1.3. The Distribution of SQRT-ET Max
2.1.4. The Gen Extreme Value (GEV)
2.1.5. The DAGUM Distribution
2.2. Tests of Goodness
2.2.1. The Kolmogorov–Smirnov test
2.2.2. The Anderson–Darling Test
2.3. Case Study
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanches Fernandes, L.; Pereira, M.-G.; Morgado, S.G.; Macário, E.B. Influence of Climate Change on the Design of Retention Basins in Northeastern Portugal. Water 2018, 10, 743. [Google Scholar] [CrossRef]
- Bai, T.; Mayer, A.L.; Shuster, W.D.; Tian, G. The Hydrologic Role of Urban Green Space in Mitigating Flooding (Luohe, China). Sustainability 2018, 10, 3584. [Google Scholar] [CrossRef]
- Gumbel, E.J. Multivariate Extremal Distributions; Bull. Inst. International the Statistique: Paris, France, 1960. [Google Scholar]
- Chow, V.T.D.R.; Maidment, L.W.M. Hidrología Aplicada; McGraw-Hill: Colombia, Santa Fé de Bogotá, 1994. [Google Scholar]
- Ponce, V.M. Engineering Hydrology, Principles and Practices; Prentice Hall: Upper Saddle River, NJ, USA, 1989. [Google Scholar]
- Pearson, K. Mathematical Contributions to the Theory of Evolution, XIX: Second Supplement to a Memoir on Skew Variation; Philosophical Transactions of the Royal Society: London, UK, 1916. [Google Scholar]
- Ferrer, F.J. Obtención de la lluvia neta según la metodología del Soil Conservation Service; Cedex: Madrid, Spain, 1991. (In Spanish) [Google Scholar]
- Témez, J.R. Extended and Improved Rational Method. Version of the Highways Administration of Spain; XXIV Congreso Internacional de la IAHR: Madrid, Spain, 1991. [Google Scholar]
- Kotz, S.; Nadarajah, S. Extreme Value Distributions: Theory and Applications; Imperial College Press: London, UK, 2000. [Google Scholar]
- Zorraquino, C. La Función SQRT-ET Max; Revista de Obras Públicas: Madrid, Spain, 2004. (In Spanish) [Google Scholar]
- de Fomento, M. Máximas Lluvias diarias en la España Peninsular; Ministerio de Fomento: Madrid, Spain, 1999. (In Spanish)
- Ministerio de Obras Públicas y Urbanismo. Instrucción de Carreteras, Norma 5.2-IC de Drenaje Superficial. It has been doneMadrid; It has been doneMadrid; Ministerio de Obras Públicas y Urbanismo: Madrid, Spain, 1990. (In Spanish)
- Catalá, F. Cálculo de caudales en las redes de saneamiento; Colegio de Ingenieros de Caminos, Canales y Puertos: Madrid, Spain, 1997. [Google Scholar]
- Ferrer, F.J. Recomendaciones para el cálculo hidrometeorológico de avenidas; Cedex: Madrid, Spain, 1993. (In Spanish) [Google Scholar]
- Panagoulia, D.; Caroni, C. Modelling maximum precipitation in a mountainous area of Greece under global warming, Hydro-climatology: Variability and Change, Proceedings of Symposium J-H02 held during IUGG2011 in Melbourne, Australia. IAHS Publ. 2011, 344, 176–181. [Google Scholar]
- Lang, M.; Ouarda, T.B.M.J.; Bobée, B. Towards operational guidelines for over-threshold modeling. J. Hydrol. 1999, 225, 103–117. [Google Scholar] [CrossRef]
- Onyutha, C. On rigorous drought assessment using daily time scale: Non-stationary frequency analyses, revisited concepts, and a new method to yield non-parametric indices. Hydrology 2017, 4, 48. [Google Scholar] [CrossRef]
- Onyutha, C. Hydrological model supported by a step-Wise calibration against sub-flows and validation of extreme flow events. Water 2019, 11, 244. [Google Scholar] [CrossRef]
- Pickands, J. Statistical inference using extreme order statistics. Ann. Stat. 1975, 3, 119–131. [Google Scholar]
- Modarres, R.; Sarhadi, A. Statistically-based regionalization of rainfall climates of Iran. Glob. Planet. Change 2011, 75, 67–75. [Google Scholar] [CrossRef]
- Dagum, C. Un nuevo modelo de distribución del ingreso personal: Especificación y estimación. Economía Aplicada 1977, 30, 413–437. (In Spanish) [Google Scholar]
- Kleiber, C. A guide to the Dagum distributions. In Modeling Income Distributions and Lorenz Curves; Springer: New York, NY, USA, 2008; pp. 97–117. [Google Scholar]
- Mielke, P.R., Jr.; Johnson, E.S. Some generalized beta distributions of the second kind having desirable application features in hydrology and meteorology. Water Resour. Res. 1974, 10, 223–226. [Google Scholar] [CrossRef]
- Alam, S.; Sabbir, M.; Khan, M. Statistical Characterization of Extreme Hydrologic Parameters for the Peripheral River System of Dhaka City. J. Water Resour. Ocean Sci. 2014, 3, 30–37. [Google Scholar] [CrossRef]
- Alam, S.; Khan, S.M.; Rahat, S.H. A Study on Selection of Probability Distributions of Extreme Hydrologic Parameters for the Peripheral River System of Dhaka City. In Proceedings of the Academics World 15th International Conference, Bangkok, Thailand, 28–29 December 2015; pp. 29–34. [Google Scholar]
- Crabbe, P.J. Conceptual Framework for a Systems Dynamics Adaptation Model to Climate Change for Charlottetown, P.E.I., Canada. J. Glob. Resour. 2016, 2, 1–11. [Google Scholar]
- Mayooran, T.; Laheetharan, A. The Statistical Distribution of Annual Maximum Rainfall in Colombo District. Sri Lankan J. Appl. Stat. 2014, 15, 107–130. [Google Scholar] [CrossRef]
- Pérez-Sánchez, J.; Senent-Aparicio, J. Analysis of meteorological droughts and dry spells in semiarid regions: A comparative analysis of probability distribution functions in the Segura Basin (SE Spain). Theor. Appl. Climatol. 2018, 133, 1061. [Google Scholar] [CrossRef]
- Domma, F.; Condino, F. The Beta-Dagum distribution: Definition and properties. Commun. Stat. Theory Methods 2013, 42, 4070–4090. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, R. A novel stormwater management system for urban roads in China based on local conditions. Sustain. Cities Soc. 2018, 39, 163–171. [Google Scholar] [CrossRef]
- Douka, M.; Karacostas, T. Statistical analyses of extreme rainfall events in Thessaloniki, Greece. Atmos. Res. 2018, 208, 60–77. [Google Scholar] [CrossRef]
- Shahzad, M.N.; Asghar, Z. Transmuted dagum distribution: A more flexible and broad shaped hazard function model. Hacet. J. Math. Stat. 2016, 45, 227–244. [Google Scholar] [CrossRef]
- Panagoulia, D.; Economou, P.; Caroni, C. Stationary and non-stationary generalized extreme value modeling of extreme precipitation over a mountainous area under climate change. Environmetrics 2014, 25, 29–43. [Google Scholar] [CrossRef]
- Caroni, C.; Panagoulia, D.; Economou, P. Non–stationary modelling of extremes of precipitation and temperature over mountainous areas under climate change. In Proceedings of the International Conference in Current Topics on Risk Analysis: ICRA6 and RISK, Barcelona, Spain, 26–29 May 2015; pp. 203–209. [Google Scholar]
- Anderson, T.W.; Darling, D.A. Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann. Math. Stat. 1952, 23, 193–212. [Google Scholar] [CrossRef]
- Gumbel, E.J. Les valeurs extrêmes des distributions statistiques. Ann. Inst. Henri Poincaré 1935, 5, 115–158. [Google Scholar]
- Champernowne, D.G. The graduation of income distributions. Econ. J. Econom. Soc. 1952, 20, 591–615. [Google Scholar] [CrossRef]
- MATHWAVE. Available online: http://www.mathwave.com/easyfit-distribution-fitting.html (accessed on 15 December 2018).
- Kolmogorov, A.N. Foundations of the Theory of Probability; Chelsea Publishing Company: New York, NY, USA, 1950. [Google Scholar]
- Miller, I.; Freund, J.E. Probabilidad y estadística para ingenieros; Reverté: Madrid, Spain, 1969. [Google Scholar]
- Shorack, G.R.; Wellner, J.A. Empirical Processes with Applications to Statistics; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Anderson, T.W.; Darling, D.A. A Test of Goodness-of-Fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [Google Scholar] [CrossRef]
- ECA&D. Algorithm Basis Document (ATBD); Royal Netherlands Meteorological Institute KNMI: De Bilt, The Netherlands, 2013. [Google Scholar]
- Wijngaard, J.B.; Tank, A.K.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- WMO. Guide to Climatological Practices (WMO No. 100), 3rd ed.; WMO: Geneva, Switzerland, 2011. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper, Nº 56; FAO: Rome, Italy, 1998. [Google Scholar]
- García-Conde, A.J. Análisis de distribuciones estadísticas alternativas a las tradicionales para la optimización de los caudales de cálculo empleados en los estudios de hidrología. Ph.D. Thesis, University of Extremadura, Badajoz, Spain, 2013. (In Spanish). [Google Scholar]
- Bobée, B.; Cavadis, G.; Ashkar, F.; Bernier, J.; Rasmussen, P. Towards a systematic approach to comparing distributions used in flood frequency analysis. J. Hidrol. 1993, 142, 121–136. [Google Scholar] [CrossRef]
- Haktanir, T.; Horlacher, H.B. Evaluation of various distributions for flood frequency analysis. Hidrol. Sci. J. Sci. Hydrol. 1993, 38, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Courty, L.G.; Rico-Ramirez, M.A.; Pedrozo-Acuña, A. The Significance of the Spatial Variability of Rainfall on the Numerical Simulation of Urban Floods. Water 2018, 10, 207. [Google Scholar] [CrossRef]
- Candelario-Garrido, A.; García-Sanz-Calcedo, J.; Reyes Rodríguez, A.M. A quantitative analysis on the feasibility of 4D planning graphic systems versus conventional systems in building projects. Sustain. Cities Soc. 2017, 35, 378–384. [Google Scholar] [CrossRef]
- Panagoulia, D.; Economou, P.; Caroni, C. Quantifying uncertainty in modelled estimates of annual maximum precipitation: Confidence intervals, European Geosciences Union. Precipitation uncertainty and variability: Observations, ensemble simulation and downscaling. Geophys. Res. Abstr. 2016, 18, 17–22. [Google Scholar]
- Carretero-Ayuso, M.J.; García-Sanz-Calcedo, J. Analytical study on design deficiencies in the envelope projects of healthcare buildings in Spain. Sustain. Cities Soc. 2018, 42, 139–147. [Google Scholar] [CrossRef]
- Zhihua, Z.; Xiaohong, C. Evaluating the Effects of Low Impact Development Practices on Urban Flooding under Different Rainfall Intensities. Water 2017, 9, 548. [Google Scholar] [CrossRef]
N° | Meteorological Stations | CV (%) | Pmax (mm) | N° | Meteorological Stations | CV (%) | Pmax (mm) |
---|---|---|---|---|---|---|---|
1 | San Vicente Alcántara | 19.6 | 112.6 | 27 | GranjaTorrehermosa | 25.9 | 116.5 |
2 | Alburquerque | 22.3 | 104.2 | 28 | Maguilla | 27.9 | 90.3 |
3 | La Roca de la Sierra | 27.8 | 140.6 | 29 | Peraleda del Zaucejo | 30.2 | 75.3 |
4 | Badajoz (Sagrajas) | 29.5 | 102.2 | 30 | Puebla del Prior | 27.6 | 181.8 |
5 | Montijo (Institute) | 32.5 | 135.8 | 31 | Puebla de la Reina | 22.3 | 173.1 |
6 | Olivenza | 30.5 | 126.3 | 32 | Monterrubio | 19.6 | 98.7 |
7 | Cheles | 19.7 | 79.1 | 33 | Puerto Hurraco | 22.6 | 106.2 |
8 | Alconchel | 25.9 | 121.3 | 34 | Castuera | 27.4 | 95.4 |
9 | Villanueva del Fresno | 22.2 | 116.2 | 35 | Quintana de Serena | 25.4 | 102.3 |
10 | Valencia del Mombuey | 19.9 | 188.6 | 36 | Valle de la Serena | 29.6 | 89.7 |
11 | Zahinos | 30.1 | 163.3 | 37 | Alange | 22.8 | 119.5 |
12 | Higuera de Vargas | 25.6 | 217.4 | 38 | Manchita | 23.6 | 109.3 |
13 | Jerez de los Caballeros | 26.8 | 171.4 | 39 | Guareña | 28.4 | 116.5 |
14 | Barcarrota | 27.5 | 157.1 | 40 | Aceuchal | 26.8 | 92.5 |
15 | La Albuera | 31.2 | 146.6 | 41 | Mérida | 30.9 | 107.8 |
16 | Talavera la Real | 29.8 | 116.5 | 42 | Santa Amalia | 26.1 | 143.1 |
17 | Fregenal de la Sierra | 19.8 | 108.2 | 43 | La Coronada | 20.9 | 135.4 |
18 | Segura de León | 18.5 | 182.1 | 44 | Campanario | 19.9 | 99.1 |
19 | Cabeza la Vaca | 16.9 | 164.9 | 45 | Acedera | 22.6 | 76.8 |
20 | Fuente de Cantos | 19.6 | 124.5 | 46 | Orellana la Sierra | 28.5 | 148.3 |
21 | Puebla del Maestre | 28.6 | 134.2 | 47 | Casas de Don Pedro | 30.2 | 92.2 |
22 | Casas de Reina | 25.8 | 149.8 | 48 | Capilla/Baterno | 29.4 | 122.3 |
23 | Villagarcía de la Torre | 27.6 | 162.8 | 49 | Siruela | 25.4 | 145.5 |
24 | Berlanga | 28.9 | 134.9 | 50 | Herrera del Duque | 27.2 | 130.3 |
25 | Valverde de Lerena | 30.2 | 141.6 | 51 | Villarta de Montes | 22.1 | 140.1 |
26 | Azuaga | 27.4 | 150.6 | 52 | Helechosa | 25.6 | 98.5 |
Distribution | San Vicente Alcántara | Jerez de los Caballeros | Herrera del Duque | |||
---|---|---|---|---|---|---|
Tests of Anderson–Darling | Test of Kolmogorv–Smirnov | Tests of Anderson–Darling | Test of Kolmogorov–Smirnov | Tests of Anderson–Darling | Test of Kolmogorov–Smirnov | |
Dagum | 0.0490 | 0.1746 | 0.0421 | 0.0914 | 0.0391 | 0.1257 |
Log-Pearson III | 0.0584 | 0.1947 | 0.0624 | 0.1758 | 0.5958 | 0.1985 |
Gumbel | 0.0603 | 0.2553 | 0.0587 | 0.1404 | 0.0687 | 0.0984 |
GEV | 0.0564 | 0.1875 | 0.0590 | 0.0654 | 0.0593 | 0.1751 |
Distribution | Cabeza la Vaca | Monterrubio | Campanario | |||
---|---|---|---|---|---|---|
P24T(mm) | Variation Respect Gumbel | P24T(mm) | Variation Respect Gumbel | P24T(mm) | Variation Respect Gumbel | |
GEV | 158.47 | 0.43% | 98.23 | −12.96% | 89.03 | −0.15% |
Dagum | 192.37 | 21.92% | 123.04 | 9.28% | 112.77 | 26.47% |
Log-Logistic 3P | 188.97 | 19.76% | 124.04 | 9.90% | 116.17 | 30.29% |
Fechet 3P | 151.64 | −3.90% | 110.94 | −1.69% | 85.35 | −4.28% |
Pearson 5 3P | 146.19 | −7.35% | 100.38 | 11.05% | 86.47 | −3.02% |
Gumbel | 157.79 | - | 112.85 | - | 89.16 | - |
SQRT-ET max | 164.90 | 4.51% | 118.80 | 5.27% | 93.45 | 4.81% |
Log Pearson Type III | 145.01 | −8.10% | 97.79 | −13.34% | 84.97 | −4.71% |
Regional analysis | 172.00 | 9.00% | 118.00 | 4.56% | 98.00 | 9.91% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Rodríguez, F.; García-Sanz-Calcedo, J.; Moral-García, F.J.; García-Conde, A.J. Statistical Study of Rainfall Control: The Dagum Distribution and Applicability to the Southwest of Spain. Water 2019, 11, 453. https://doi.org/10.3390/w11030453
López-Rodríguez F, García-Sanz-Calcedo J, Moral-García FJ, García-Conde AJ. Statistical Study of Rainfall Control: The Dagum Distribution and Applicability to the Southwest of Spain. Water. 2019; 11(3):453. https://doi.org/10.3390/w11030453
Chicago/Turabian StyleLópez-Rodríguez, Fernando, Justo García-Sanz-Calcedo, Francisco J. Moral-García, and Antonio J. García-Conde. 2019. "Statistical Study of Rainfall Control: The Dagum Distribution and Applicability to the Southwest of Spain" Water 11, no. 3: 453. https://doi.org/10.3390/w11030453
APA StyleLópez-Rodríguez, F., García-Sanz-Calcedo, J., Moral-García, F. J., & García-Conde, A. J. (2019). Statistical Study of Rainfall Control: The Dagum Distribution and Applicability to the Southwest of Spain. Water, 11(3), 453. https://doi.org/10.3390/w11030453