The Role of Management of Stream–Riparian Zones on Subsurface–Surface Flow Components
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
3.1. Hydrogeological Characterization
3.2. Hydrology
3.3. Discharge Measurements in Stream and Springs
3.4. Direct Seepage through the Streambed: 1D Vertical Temperature Profiling
3.5. Water Sampling and Analysis
4. Results
4.1. Hydrogeological Characterization
4.2. Hydrology
4.3. Stream and Spring Discharge
4.3.1. Stream Discharge
4.3.2. Wetland Springs Discharge
4.4. Streambed and Bank Fluxes
4.5. Water-Stable Isotopes
5. Discussion
5.1. Hydraulic Connectivity
5.2. Heterogeneity in Flow Paths to Stream
5.3. Water Balance
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kronvang, B.; Andersen, H.E.; Børgesen, C.; Dalgaard, T.; Larsen, S.E.; Bøgestrand, J.; Blicher-Mathiasen, G. Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environ. Sci. Policy 2008, 11, 144–152. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Kronvang, B.; Audet, J. Evaluation of nutrient retention in four restored Danish riparian wetlands. Hydrobiologia 2011, 674, 5–24. [Google Scholar] [CrossRef]
- Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; et al. Water quality functions of riparian forest buffers in chesapeake bay watersheds. Environ. Manag. 1997, 21, 687–712. [Google Scholar] [CrossRef]
- Peterjohn, W.T.; Correll, D.L. Nutrient dynamics in an agricultural watershed: Observations on the role of a Riparian forest. Ecology 1984, 65, 1466–1475. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot spots and hot moments in riparian zones: Potential for improved water quality management. J. Am. Water Res. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Hill, A. Nitrate Removal in Stream Riparian Zones. J. Environ. Qual. 1996, 25, 743–755. [Google Scholar] [CrossRef]
- Devito, K.J.; Fitzgerald, D.; Hill, A.R.; Aravena, R. Nitrate Dynamics in Relation to Lithology and Hydrologic Flow Path in a River Riparian Zone. J. Environ. Qual. 2000, 29, 1075–1084. [Google Scholar] [CrossRef]
- Shabaga, J.A.; Hill, A.R. Groundwater-fed surface flow path hydrodynamics and nitrate removal in three riparian zones in southern Ontario, Canada. J. Hydrol. 2010, 388, 52–64. [Google Scholar] [CrossRef]
- Hill, A.R. The impact of pipe flow in riparian peat deposits on nitrate transport and removal. Hydrol. Processes 2012, 26, 3135–3146. [Google Scholar] [CrossRef]
- Brüsch, W.; Nilsson, B. Nitrate transformation and water movement in a wetland area. Hydrobiologia 1993, 251, 103–111. [Google Scholar] [CrossRef]
- Johansen, O.M.; Pedersen, M.L.; Jensen, J.B. Effect of groundwater abstraction on fen ecosystems. J. Hydrol. 2011, 402, 357–366. [Google Scholar] [CrossRef]
- Langhoff, J.H.; Rasmussen, K.R.; Christensen, S. Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J. Hydrol. 2006, 320, 342–358. [Google Scholar] [CrossRef]
- Frederiksen, R.R.; Christensen, S.; Rasmussen, K.R. Estimating groundwater discharge to a lowland alluvial stream using methods at point-, reach-, and catchment-scale. J. Hydrol. 2018, 564, 836–845. [Google Scholar] [CrossRef]
- Houmark-Nielsen, M. The last interglacial-glacial cycle in Denmark. Quatern. Int. 1989, 3–4, 31–39. [Google Scholar] [CrossRef]
- Sebok, E.; Refsgaard, J.C.; Warmink, J.J.; Stisen, S.; Jensen, K.H. Using expert elicitation to quantify catchment water balances and their uncertainties. Water Resources Res. 2016, 52, 5111–5133. [Google Scholar] [CrossRef]
- Poulsen, J.R.; Sebok, E.; Duque, C.; Tetzlaff, D.; Engesgaard, P.K. Detecting groundwater discharge dynamics from point-to-catchment scale in a lowland stream: Combining hydraulic and tracer methods. Hydrol. Earth Syst. Sci. 2015, 19, 1871–1886. [Google Scholar] [CrossRef]
- Karan, S.; Engesgaard, P.; Looms, M.C.; Laier, T.; Kazmierczak, J. Groundwater flow and mixing in a wetland–stream system: Field study and numerical modeling. J. Hydrol. 2013, 488, 73–83. [Google Scholar] [CrossRef]
- Jensen, J.K.; Engesgaard, P.; Johnsen, A.R.; Marti, V.; Nilsson, B. Hydrological mediated denitrification in groundwater below a seasonal flooded restored riparian zone. Water Resources Res. 2017, 53, 2074–2094. [Google Scholar] [CrossRef]
- Lowry, C.S.; Fratta, D.; Anderson, M.P. Ground penetrating radar and spring formation in a groundwater dominated peat wetland. J. Hydrol. 2009, 373, 68–79. [Google Scholar] [CrossRef]
- Van Bellen, S.; Dallaire, P.-L.; Garneau, M.; Bergeron, Y. Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef]
- Skogerboe, G.V.; Bennett, R.S.; Walker, W.R. Generalized discharge relation for cutthroat flumes. J. Irrigat. Drain. Div. 1972, 98, 569–583. [Google Scholar]
- Jensen, J.K.; Engesgaard, P. Nonuniform Groundwater Discharge across a Streambed: Heat as a Tracer. Vadose Zone J. 2011, 10, 99–109. [Google Scholar] [CrossRef]
- Kidmose, J.; Engesgaard, P.; Nilsson, B.; Laier, T.; Looms, M. Spatial Distribution of Seepage at a Flow-Through Lake: Lake Hampen, Western Denmark. Vadose Zone J. 2011, 10, 110–124. [Google Scholar] [CrossRef]
- Duque, C.; Müller, S.; Sebok, E.; Haider, K.; Engesgaard, P. Estimating groundwater discharge to surface waters using heat as a tracer in low flux environments: The role of thermal conductivity. Hydrol. Processes 2016, 30, 383–395. [Google Scholar] [CrossRef]
- Bredehoeft, J.D.; Papadolopulos, I.S. Rates of Vertical Groundwater Movement Estimated from the Earth’s Thermal Profile. Water Resources Res. 1965, 1, 325–328. [Google Scholar] [CrossRef]
- Sebok, E.; Müller, S. The effect of sediment thermal conductivity on vertical groundwater flux estimates. Hydrol. Earth Syst. Sci. Discuss. 2018. [Google Scholar] [CrossRef]
- Stonestrom, D.A.; Blasch, K.W. Determining Temperature and Thermal Properties for Heat-Based Studies of Surface-Water Ground-Water Interactions: Appendix A of Heat as a Tool for Studying the Movement of Ground Water Near Streams (Cir1260); Stonestrom, D.A., Constantz, J., Eds.; U.S. Geological Survey: Reston, VA, USA, 2003; pp. 73–80.
- Müller, S.; Stumpp, C.; Sørensen, J.H.; Jessen, S. Spatiotemporal variation of stable isotopic composition in precipitation: Post-condensational effects in a humid area. Hydrol. Processes 2017, 31, 3146–3159. [Google Scholar] [CrossRef]
- Dahl, M.; Nilsson, B.; Langhoff, J.H.; Refsgaard, J.C. Review of classification systems and new multi-scale typology of groundwater–surface water interaction. J. Hydrol. 2007, 344, 1–16. [Google Scholar] [CrossRef]
- Vidon, P.G.F.; Hill, A.R. Landscape controls on the hydrology of stream riparian zones. J. Hydrol. 2004, 292, 210–228. [Google Scholar] [CrossRef]
- Cey, E.E.; Rudolph, D.L.; Parkin, G. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J. Contamin. Hydrol. 1999, 37, 45–67. [Google Scholar] [CrossRef]
- Anibas, C.; Buis, K.; Verhoeven, R.; Meire, P.; Batelaan, O. A simple thermal mapping method for seasonal spatial patterns of groundwater–surface water interaction. J. Hydrol. 2011, 397, 93–104. [Google Scholar] [CrossRef]
- Schmidt, C.; Bayer-Raich, M.; Schirmer, M. Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale. Hydrol. Earth Syst. Sci. 2006, 10, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Karan, S.; Sebok, E.; Engesgaard, P. Air/water/sediment temperature contrasts in small streams to identify groundwater seepage locations. Hydrol. Processes 2017, 31, 1258–1270. [Google Scholar] [CrossRef]
- Turnepseed, D.P.; Sauer, V.B. Discharge Measurements at Gaging Stations; U.S. Geological Survey Techniques and Methods Book 3; U.S. Geological Survey: Reston, VA, USA, 2010.
- Covino, T. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology 2017, 277, 133–144. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiness, M.; Jessen, S.; Spitilli, M.; van’t Veen, S.G.W.; Højberg, A.L.; Engesgaard, P. The Role of Management of Stream–Riparian Zones on Subsurface–Surface Flow Components. Water 2019, 11, 1905. https://doi.org/10.3390/w11091905
Steiness M, Jessen S, Spitilli M, van’t Veen SGW, Højberg AL, Engesgaard P. The Role of Management of Stream–Riparian Zones on Subsurface–Surface Flow Components. Water. 2019; 11(9):1905. https://doi.org/10.3390/w11091905
Chicago/Turabian StyleSteiness, Mads, Søren Jessen, Mattia Spitilli, Sofie G. W. van’t Veen, Anker Lajer Højberg, and Peter Engesgaard. 2019. "The Role of Management of Stream–Riparian Zones on Subsurface–Surface Flow Components" Water 11, no. 9: 1905. https://doi.org/10.3390/w11091905
APA StyleSteiness, M., Jessen, S., Spitilli, M., van’t Veen, S. G. W., Højberg, A. L., & Engesgaard, P. (2019). The Role of Management of Stream–Riparian Zones on Subsurface–Surface Flow Components. Water, 11(9), 1905. https://doi.org/10.3390/w11091905