Climate Change Made Major Contributions to Soil Water Storage Decline in the Southwestern US during 2003–2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Domain
2.2. Data Sources
2.3. Data Processing
3. Results and Discussions
3.1. Yearly Relative Water Storage in the SWUS during 2003–2014
3.2. Water Storage Decline from 2003 to 2014
3.3. Water Consumption across the SWUS from 2003 to 2014
3.4. Association between Net Atmospheric Water Input and Water Thickness Anomalies
3.5. Climate Contribution to Declined Water Storage
3.6. The Way Forward
4. Conclusions
Supplementary Materials
- Figure S1. Changing rate of annual precipitation from 2003 to 2014;
- Figure S2. Changing rate of evapotranspiration during 2003–2014;
- Figure S3. Changing rate of net atmospheric water input (P−ET) from 2003 to 2014;
- Figure S4. Changing rate of air temperature from 2003 to 2014;
- Table S1. Average water consumption (mm/m2/year) for each state and entire SWUS region during 2003–2010;
- Table S2. Annual temperature (°C) at state and regional level in SWUS during 2003–2014.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Falkenmark, M.; Rockström, J. Balancing Water for Humans and Nature: The New Approach in Ecohydrology; Earthscan: London, UK, 2004. [Google Scholar]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology, 2nd ed.; Springer: New York, NY, USA, 2011; p. 529. [Google Scholar]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, L.; Guo, D.; Li, L.; Xu, X. Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China. Sci. Total Environ. 2017, 578, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tao, B.; Miao, Y.; Zhang, L.; Song, X.; Ren, W.; He, L.; Xu, X. A global dataset for economic losses of extreme hydrological events during 1960–2014. Water Resour. Res. 2019, 55, 5165–5175. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.B.; Cescatti, A.; Chen, J.; deJeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Chang, M. Forest Hydrology: An Introduction to Water and Forests; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Chen, S.; Xia, J.; Luo, Y. Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe. PLoS ONE 2014, 9, e104217. [Google Scholar] [CrossRef]
- Sala, O.E.; Lauenroth, W.K. Small rainfall events: An ecological role in semiarid regions. Oecologia 1982, 53, 301–304. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Mcintyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- MacDonald, G.M. Water, climate change, and sustainability in the southwest. Proc. Natl. Acad. Sci. USA 2010, 107, 21256–21262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jardine, A.; Merideth, R.; Black, M.; LeRoy, S. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment; Island press: Washington, DC, USA, 2013. [Google Scholar]
- Liverman, D.M.; Merideth, R. Climate and society in the US Southwest: The context for a regional assessment. Clim. Res. 2002, 21, 199–218. [Google Scholar] [CrossRef]
- Jana, S.; Rajagopalan, B.; Alexander, M.A.; Ray, A.J. Understanding the dominant sources and tracks of moisture for summer rainfall in the southwest United States. J. Geophys. Res. Atmos. 2018, 123, 4850–4870. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A. Human-induced changes in the hydrology of the western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.P.; Allen, C.D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, S.W. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl. Acad. Sci. USA 2010, 107, 21289–21294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cayan, D.R.; Das, T.; Pierce, D.W.; Barnett, T.P.; Tyree, M.; Gershunov, A. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA 2010, 107, 21271–21276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleick, P.H. Roadmap for sustainable water resources in southwestern North America. Proc. Natl. Acad. Sci. USA 2010, 107, 21300–21305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landerer, F.W.; Swenson, S.C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.; Chen, J.; Seneviratne, S.; Viterbo, P.; Holl, S.; Wilson, C. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.; Famiglietti, J.; Chen, J.; Rodell, M.; Seneviratne, S.; Viterbo, P.; Wilson, C. Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jia, L.; Steffen, H.; Wu, P.; Jiang, L.; Hsu, H.; Xiang, L.; Wang, Z.; Hu, B. Increased water storage in North America and Scandinavia from GRACE gravity data. Nat. Geosci. 2013, 6, 38–42. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Schmied, H.M.; van Beek, L.P.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G.; Biancamaria, S.; Mognard, N.M.; Cazenave, A. Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Long, D.; Scanlon, B.R.; Longuevergne, L.; Sun, A.Y.; Fernando, D.N.; Save, H. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett. 2013, 40, 3395–3401. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.H.; Famiglietti, J.S.; Chambers, D.P. GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeorol. 2009, 10, 22–40. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Li, C.; Naik, N.; Cook, B.; Nakamura, J.; Liu, H. Projections of declining surface-water availability for the southwestern United States. Nat. Clim. Chang. 2013, 3, 482–486. [Google Scholar] [CrossRef]
- Xu, X.F.; Tian, H.Q.; Zhang, C.; Liu, M.L.; Ren, W.; Chen, G.S.; Lu, C.Q.; Bruhwiler, L. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences 2010, 7, 3637–3655. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Chen, G.; Lu, C.; Xu, X.; Ren, W.; Zhang, B.; Banger, K.; Tao, B.; Pan, S.; Liu, M. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst. Health Sustain. 2015, 1, 4. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W. The 2011 texas drought. Tex. Water J. 2012, 3, 59–95. [Google Scholar]
- Ramillien, G.; Famiglietti, J.S.; Wahr, J. Detection of continental hydrology and glaciology signals from GRACE: A review. Surv. Geophys. 2008, 29, 361–374. [Google Scholar] [CrossRef]
- Seager, R.; Ting, M.; Held, I.; Kushnir, Y.; Lu, J.; Vecchi, G.; Huang, H.-P.; Harnik, N.; Leetmaa, A.; Lau, N.-C. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 2007, 316, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Rodell, M.; Famiglietti, J. Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour. Res. 1999, 35, 2705–2723. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Frappart, F.; Cazenave, A.; Güntner, A. Time variations of land water storage from an inversion of 2 years of GRACE geoids. Earth Planet. Sci. Lett. 2005, 235, 283–301. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Frappart, F.; Güntner, A.; Ngo-Duc, T.; Cazenave, A.; Laval, K. Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W. Climate change and global water resources. Glob. Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Semrau, J.D.; DiSpirito, A.A.; Yoon, S. Methanotrophs and copper. FEMS Microbiol. Rev. 2010, 34, 496–531. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.-I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Brooks, H.; Kossin, J.; Lawrimore, J.H.; Arndt, D.; Bosart, L.; Changnon, D.; Cutter, S.L.; Doesken, N. Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Am. Meteorol. Soc. 2013, 94, 499–514. [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Meko, D.M.; MacDonald, G.M.; Stahle, D.W.; Cook, E.R. A 1200-year perspective of 21st century drought in southwestern North America. Proc. Natl. Acad. Sci. USA 2010, 107, 21283–21288. [Google Scholar] [CrossRef] [PubMed]
- Blazquez, A.; Meyssignac, B.; Lemoine, J.; Berthier, E.; Ribes, A.; Cazenave, A. Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: Implications for the global water and sea level budgets. Geophys. J. Int. 2018, 215, 415–430. [Google Scholar] [CrossRef]
- Tang, D.; Ma, C.; Wang, Y.; Xu, X. Multiscale evaluation of NCEP and CRUNCEP data sets at 90 large US cities. J. Geophys. Res. Atmos. 2017, 122, 7433–7444. [Google Scholar] [CrossRef]
- Wilder, M.; Garfin, G.; Ganster, P.; Eakin, H.; Romero-Lankao, P.; Lara-Valencia, F.; Cortez-Lara, A.A.; Mumme, S.; Neri, C.; Muñoz-Arriola, F. Climate change and US-Mexico border communities. In Assessment of Climate Change in the Southwest United States; Springer: Berlin, Germany, 2013; pp. 340–384. [Google Scholar]
- Langford, S.; Stevenson, S.; Noone, D. Analysis of low-frequency precipitation variability in CMIP5 historical simulations for southwestern North America. J. Clim. 2014, 27, 2735–2756. [Google Scholar] [CrossRef]
Year | SWUS | AZ | NM | OK | TX | |||||
---|---|---|---|---|---|---|---|---|---|---|
S | P−ET | S | P−ET | S | P−ET | S | P−ET | S | P−ET | |
2003 | 7.2 | 348.8 | −3.1 | 125.5 | −1 | 78.6 | 8.9 | 606.1 | 15.7 | 509.3 |
2004 | 17.7 | 595.3 | −9.6 | 197 | 2.5 | 208.1 | 19.2 | 896.7 | 38 | 875.8 |
2005 | 24.4 | 393.4 | 35.1 | 209.7 | 17.4 | 195.1 | 12.1 | 625.3 | 27.6 | 508.1 |
2006 | −27.3 | 393.2 | 3.8 | 145.1 | −10 | 234.4 | −53.5 | 586.3 | −44.2 | 525.5 |
2007 | 2.9 | 599.1 | −5.4 | 203.4 | 4.1 | 210.8 | −8.8 | 1047.2 | 9.4 | 839.7 |
2008 | −4.8 | 458.9 | −2.6 | 227 | −0.4 | 211.4 | 10.9 | 885.7 | −12.4 | 566.7 |
2009 | −13 | 331.6 | −21.2 | 59.4 | −13.6 | 104.7 | 20.2 | 676.1 | −18.4 | 463.5 |
2010 | 0.9 | 354.5 | 2.9 | 203.9 | −0.9 | 130.5 | 6.5 | 550 | −0.6 | 470 |
2011 | −58.2 | 185.5 | −9.5 | 118.3 | −30.3 | 86.6 | −61.8 | 387.4 | −95.6 | 209.1 |
2012 | −60.1 | 250.7 | −21.2 | 103.3 | −36 | 35.5 | −90.9 | 400.5 | −84.3 | 378.1 |
2013 | −83.5 | 328.3 | −61 | 241.5 | −62.1 | 183.2 | −98.1 | 531.7 | −106.5 | 377.1 |
2014 | −73.3 | 347.4 | −60 | 247.6 | −57.7 | 270.4 | −80.7 | 415.1 | −88.7 | 408.8 |
Ratio | Area (km2) | Percentage (%) |
---|---|---|
Ratio ≤ 0 | 309,579 | 22.29 |
0 < Ratio ≤ 0.2 | 40,270 | 2.75 |
0.2 < Ratio ≤ 0.4 | 42,440 | 2.90 |
0.4 < Ratio ≤ 0.6 | 58,587 | 4.00 |
0.6 < Ratio ≤ 0.8 | 48,532 | 3.31 |
0.8 < Ratio ≤ 1 | 64,578 | 4.41 |
1 < Ratio ≤ 2 | 331,546 | 22.63 |
2 < Ratio ≤ 5 | 509,941 | 34.81 |
Ratio > 5 | 42,400 | 2.89 |
Total | 1,447,873 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Gao, L.; Yuan, F.; Guo, Y.; Xu, X. Climate Change Made Major Contributions to Soil Water Storage Decline in the Southwestern US during 2003–2014. Water 2019, 11, 1947. https://doi.org/10.3390/w11091947
Liu J, Gao L, Yuan F, Guo Y, Xu X. Climate Change Made Major Contributions to Soil Water Storage Decline in the Southwestern US during 2003–2014. Water. 2019; 11(9):1947. https://doi.org/10.3390/w11091947
Chicago/Turabian StyleLiu, Jianzhao, Liping Gao, Fenghui Yuan, Yuedong Guo, and Xiaofeng Xu. 2019. "Climate Change Made Major Contributions to Soil Water Storage Decline in the Southwestern US during 2003–2014" Water 11, no. 9: 1947. https://doi.org/10.3390/w11091947
APA StyleLiu, J., Gao, L., Yuan, F., Guo, Y., & Xu, X. (2019). Climate Change Made Major Contributions to Soil Water Storage Decline in the Southwestern US during 2003–2014. Water, 11(9), 1947. https://doi.org/10.3390/w11091947