Assessment of Effective Dose from Radioactive Isotopes Contained in Mineral Waters Received by Patients During Hydrotherapy Treatments
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- –3 g L−1—poorly mineralized
- 3–10 g L−1—average mineralization
- >10 g L−1—highly mineralized [12]
3.1. Inhalations
3.2. Baths
- DCFef—conversion factor of Sv s−1 to Bq m−2,
- T—time in s,
- A—surface activity Bq m−2.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References and Notes
- Polish Geological and Mining Law. Act of 9 June 2011, (consolidated text: Journal of Laws. 2011 item 163).
- The Pharmaceutical Law Act of September 6, 2001 (consolidated text: Journal of Laws of 2019, item 499).
- Ibrahim, S.A.; Li, S.K. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain. Int. J. Pharm. 2010, 383, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavasi, N.; Somlai, J.G.; Kovacs, T.; Schabo, T.; Varhegyi, A.; Hakl, J. Occupational and patient doses in the therapeutic cave, Tapolca (Hungary). Radiat. Prot. Dosim. 2003, 106, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Somlai, J.; Torma, A.; Dobrovari, P.; Kavasi, N.; Nagy, K.; Kovacs, T. Contribution of Rn-222, Ra-226, U-234 and U-238 radionuclides to the occupational and patient exposure in Heviz-spas in Hungary. J. Radioanal. Nucl. Chem. 2007, 272, 101–106. [Google Scholar] [CrossRef]
- Tempfer, H.; Hofmann, W.; Schober, A.; Lettner, H.; Dinu, A.L. Deposition of radon progeny on skin surfaces an resulting radiation doses in radon therapy. Radiat. Environ. Biophys. 2010, 49, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Walencik-Łata, A.; Kozłowska, B.; Dorda, J.; Przylibski, T.A. The detailed analysis of natural radionuclides dissolved in spa waters of the Kłodzko Valley, Sudety Mountains, Poland. Sci. Total Environ. 2016, 569, 1174–1189. [Google Scholar] [CrossRef] [PubMed]
- Csondor, K.; Bajak, P.; Surbeck, H.; Izsak, B.; Horvath, A. Transient natura of riverbank filtered drinking water supply systems–A new challenge of natural radioactivity assessment. J. Environ. Radioact. 2020, 211, 106072. [Google Scholar] [CrossRef] [PubMed]
- Dicu, T.; Burghele, B.D.; Cucos, A.; Mishra, R.; Sapra, B.K. Assessment of annual effective dose from exposure to natural radioactivity sources in a case-control study in Bihor County, Romania. Radiat. Prot. Dosim. 2019, 185, 15–24. [Google Scholar] [CrossRef]
- Silva, C.R.E.; Machado, D.V.; da Silva-Filho, E.V. Determination of the natural radioactivity in the mineral water distributed in the Salutaris Park, Paraíba do Sul, Brazil. Environ. Earth Sci. 2019, 78, 639. [Google Scholar] [CrossRef]
- Bonotto, D.M. Gross alpha/beta radioactivity and radiation dose in thermal and non-thermal spas groundwaters. Heliyon 2019, 5, e01563. [Google Scholar] [CrossRef] [Green Version]
- Marchacz, W. Hydrogeology; Wydawnictwa Geologiczne: Warszawa, Poland, 1960; pp. 240–244. [Google Scholar]
- Bukowczan, Z.; Kurzawa, R.; Bukowczan, J. Epidemiologia chorób alergicznych oraz analiza czynników środowiskowych. Acta Pneumonol. Allergol. Pediatr. 2004, 7, 55–61. (In Polish) [Google Scholar]
- Grabicki, M.; Batura-Gabryel, H. Use of aerosol therapy in pulmonary diseases. Przew Lek. 2008, 2, 89–95. (In Polish) [Google Scholar]
- Alkiewicz, J. Aerozoloterapia w chorobach układu oddechowego u dzieci. Przew Lek. 2009, 4, 106–111. [Google Scholar]
- Fraioli, A.; Grassi, M.; Mennuni, G.; Geraci, A.; Petraccia, A.; Fontana, M.; Conte, S.; Serio, A. Clinical researches on the efficacy of spa therapy in fibromyalgia. A systematic review. Ann. Ist. Super. Sanita 2013, 49, 219–229. [Google Scholar] [PubMed]
- Tomczak, H.; Hansdorfer-Korzon, R.; Majkowicz, M.; Basiński, K.; Zdun-Ryżewska, A.; Tomczak, W.; Teodorczyk, J. Balneotherapy in the complex treatment of fibromyalgia: A review of selected literature. Ból 2016, 17, 33–37. [Google Scholar] [CrossRef]
- Kocher, D.C.; Eckerman, K.F. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface. Health Phys. 1987, 53, 135–141. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. Conversion Coefficient for Radiological Protection Quantities for External Radiation Exposure, Annex G. In Special Considerations for Assessing the Local Skin-Equivalent Dose; Annals of the ICRP. Publication 116; International Commission on Radiological Protection: Ottawa, ON, Canada, 2010; Volume 40, pp. 247–250. [Google Scholar]
- International Commission on Radiological Protection. Recommendation of the International Commission on Radiological Protection; Annals ICRP 21(1-3); International Commission on Radiological Protection: Ottawa, ON, Canada, 1991. [Google Scholar]
- International Commission on Radiological Protection. The 2007 Recommendation of the International Commission on Radiological Protection; Annals ICRP. Publication 103; International Commission on Radiological Protection: Ottawa, ON, Canada, 2007; Volume 37. [Google Scholar]
- Yamaoka, K.; Mitsunobo, F.; Hanamoto, K.; Mori, S.; Tanizaki, Y.; Sugita, K. Study on biologic effects of radon and thermal therapy on osteoarthritis. J. Pain 2004, 5, 20–25. [Google Scholar] [CrossRef]
- Franke, A.; Reiner, L.; Pratzel, H.G.; Franke, T.; Resch, L.K. Long-term efficacy of radon spa therapy in rheumatoid arthritis-A randomized sham-controlled study and follow-up. Rheumatology 2000, 39, 894–902. [Google Scholar] [CrossRef] [Green Version]
- Karpińska, M.; Mnich, K.; Kapała, J.; Bielawska, A.; Kulesza, G.; Mnich, S. Radioactivity of peat mud used in therapy. J. Environ. Radioact. 2016, 152, 97–100. [Google Scholar] [CrossRef]
- Karpińska, M.; Mnich, Z.; Kapała, J.; Szpak, A. The evaluation of indoor radon exposure in houses. Pol. J. Environ. Stud. 2009, 18, 1005–1012. [Google Scholar]
- Dobrzyński, L.; Janiak, M.K.; Strupczewski, A.; Waligorski, M. On the need to replace the present paradigm of radiation protection-Comments by SARI (Scientists for accurate radiation information). Postępy Techniki Jądrowej 2017, 60, 2–11. [Google Scholar]
- Lehrer, S.; Rosenzweig, K.E. Lung cancer hormesis in high impact states where nuclear testing occurred. Clin. Lung Cancer 2015, 16, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Rithidech, K.N.; Scott, B.R. Evidence for radiation hormesis after in vitro exposure of human lymphocytes to low doses of ionizing radiation. Dose Response 2008, 6, 252–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Huber, M.; Wang, T.; Dali, W.; Lin, Z.; Chun-Sheng, Y. Progress in the studies on hormesis of low-dose pollutants. Environ. Dis. 2016, 1, 58–64. [Google Scholar]
- Yang, G.; Kong, Q.; Wang, G.; Jin, H.; Zhou, L.; Yu, D.; Niu, C.; Han, W.; Li, W.; Cui, J. Low-dose ionizing radiation induced direct activation of natural killer cells and provides a novel approach for adoptive cellular immunotherapy. Cancer Biother. Radiopharm. 2014, 29, 428–434. [Google Scholar] [CrossRef] [Green Version]
No. | Sample Name | Description of Sample |
---|---|---|
1 | Zabłocka iodine-bromine brine mist | Source Dębowiec near Skoczów |
2 | Rabczańska iodine-bromine brine | “Krakus” spring at Rabka Zdrój |
3 | Zabłocka iodine-bromine thermal salt | Source Dębowiec near Skoczów |
4 | Rabczańska Thermal Brine | Source “Rabka” IG-2 at Rabka Zdrój |
5 | Kołobrzeg peat mud water | Kolobrzeg Health Resort |
6 | Dziedzilla water | Source “Dziedzilla” at Szczawa |
7 | Solec Zdrój sulfur water | Solec Zdrój Health Resort |
8 | Ciechocinek brine water 1 | Ciechocinek mineral spring |
9 | Ciechocinek brine water 2 | Ciechocinek mineral spring |
10 | Szczawa water | Source “Szczawa I” at Szczawa |
11 | Konstanciń therapeutic brine water | Source “Warszawa IG” at Konstancin Zdrój Health Resort |
12 | Kołobrzeska iodine-mineral brine | Source no. 7 “Warcisław” at Kołobrzeg Health Resort |
13 | Goczałkowice Zdrój brine for inhalation | Goczałkowice- Zdrój Health Resort |
14 | Goczałkowice Zdrój bath brine | Goczałkowice- Zdrój Health Resort |
15 | Połczyńska brine | Source “IG-1” at Połczyn Health Resort |
16 | Ciechocińska bath brine | Ciechocinek Health Resort |
17 | Bath brine from Zabłocie | Bore-hole “Korona” at Zabłocie Solanka Health Resort |
18 | Brine from Zabłocie for inhaling | Bore-hole “Korona” at Zabłocie Solanka Health Resort |
19 | municipal water | supply in Białystok |
No. | Total Activity (Bq L−1) | Mineralization (g) |
---|---|---|
1 | 8 | 1.44 |
2 | 9 | 24.17 |
3 | 6 | 183.44 |
4 | 8 | 21.0 |
5 | 5 | 60.0 |
6 | 7 | 5.70 |
7 | 8 | 17.07 |
8 | 26 | 5.87 |
9 | 52 | 5.87 |
10 | 11 | 17.13 |
11 | 11 | 71.17 |
12 | 13 | 56.73 |
13 | 140 | 74.5 |
14 | 43 | 71.3 |
15 | 11 | 101.52 |
16 | 14 | 47.38 |
17 | 12 | 42.52 |
18 | 9 | 42.64 |
19 | 9 | 0.9 |
Sample Number | ≤1 year | 1–2 years | 2–7 years | |||
---|---|---|---|---|---|---|
226Ra | Ei | 226Ra | Ei | 226Ra | Ei | |
1 | 8.24 | 8.50 | 2.98 | 3.17 | 1.74 | 1.81 |
2 | 9.73 | 10.10 | 3.52 | 3.74 | 2.06 | 2.13 |
4 | 4.68 | 5.00 | 1.69 | 1.91 | 0.99 | 1.05 |
5 | 2.25 | 2.50 | 0.81 | 0.97 | 0.48 | 0.52 |
6 | 4.87 | 5.10 | 1.76 | 1.93 | 1.03 | 1.08 |
12 | 4.93 | 5.70 | 1.78 | 2.32 | 1.04 | 1.25 |
13 | 168.42 | 170.40 | 60.89 | 62.22 | 35.63 | 36.07 |
14 | 5.12 | 6.70 | 1.85 | 2.95 | 1.08 | 1.44 |
15 | 2.81 | 3.30 | 1.02 | 1.31 | 0.59 | 0.68 |
16 | 5.43 | 6.10 | 1.96 | 2.40 | 1.15 | 1.31 |
18 | 5.30 | 5.70 | 1.92 | 2.21 | 1.12 | 1.25 |
Sample Number | >17 years | |
---|---|---|
226Ra | Ei | |
1 | 1.11 | 1.14 |
2 | 1.31 | 1.35 |
4 | 0.63 | 0.67 |
5 | 0.30 | 0.33 |
6 | 0.66 | 0.69 |
12 | 0.66 | 0.76 |
13 | 22.67 | 22.94 |
14 | 0.69 | 0.89 |
15 | 0.38 | 0.45 |
16 | 0.73 | 0.81 |
18 | 0.71 | 0.76 |
Sample Number | E (µSv) |
---|---|
2 | 0.05 |
3 | 0.04 |
4 | 0.05 |
5 | 0.04 |
7 | 0.06 |
8 | 0.24 |
9 | 0.49 |
11 | 0.09 |
12 | 0.1 |
13 | 1.1 |
14 | 0.37 |
15 | 0.091 |
16 | 0.12 |
17 | 0.1 |
19 | 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpińska, M.; Kapała, J.; Raciborska, A.; Mnich, S. Assessment of Effective Dose from Radioactive Isotopes Contained in Mineral Waters Received by Patients During Hydrotherapy Treatments. Water 2020, 12, 97. https://doi.org/10.3390/w12010097
Karpińska M, Kapała J, Raciborska A, Mnich S. Assessment of Effective Dose from Radioactive Isotopes Contained in Mineral Waters Received by Patients During Hydrotherapy Treatments. Water. 2020; 12(1):97. https://doi.org/10.3390/w12010097
Chicago/Turabian StyleKarpińska, Maria, Jacek Kapała, Agnieszka Raciborska, and Stanisław Mnich. 2020. "Assessment of Effective Dose from Radioactive Isotopes Contained in Mineral Waters Received by Patients During Hydrotherapy Treatments" Water 12, no. 1: 97. https://doi.org/10.3390/w12010097
APA StyleKarpińska, M., Kapała, J., Raciborska, A., & Mnich, S. (2020). Assessment of Effective Dose from Radioactive Isotopes Contained in Mineral Waters Received by Patients During Hydrotherapy Treatments. Water, 12(1), 97. https://doi.org/10.3390/w12010097