Influence of Small Hydroelectric Power Stations on River Water Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Parameters Studied
2.2. Sampling
2.3. Analyses and Statistics
3. Results
3.1. Temperature
3.2. pH
3.3. Dissolved Oxygen
3.4. Conductivity
3.5. Biological Status of the Water
3.6. Ecological Status of the Riparian Zones
3.7. General Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azad, K.; Rasul, M.; Khan, M.M.; Ahasan, T.; Ahmed, S. Energy Scenario: Production, Consumption and Prospect of Renewable Energy in Australia. J. Power Energy Eng. 2014, 2, 19–25. [Google Scholar] [CrossRef]
- Osho, G.; Nazemzadeh, A.; Osagie, J.; Williford, R. Increased Demand for Oil in Developing Countries: Effects on the Global Oil Trade. Southwest Rev. Int. Bus. Res. 2005, 15, 221–231. [Google Scholar]
- Lutz, W.; Samir, K.C. Dimensions of global population projections: What do we know about future population trends and structures. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2779–2791. [Google Scholar] [CrossRef] [PubMed]
- Krane, J. Climate change and fossil fuel: An examination of risks for the energy industry and producer states. MRS Energy Sustain. 2017, 4, E2. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Burnett, R.T.; Haines, A.; Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl. Acad. Sci. USA 2019, 116, 7192–7197. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2007: Mitigation of Climate Change: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2015; pp. 1–30. [Google Scholar]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, K.; Bala, G.; Cao, L. The Science of Geoengineering. Annu. Rev. Earth Planet. Sci. 2013, 41, 231–256. [Google Scholar] [CrossRef]
- Larkin, A.; Kuriakose, J.; Sharmina, M.; Anderson, K. What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Clim. Policy 2018, 18, 690–714. [Google Scholar] [CrossRef]
- Fuss, S.; Canadell, J.G.; Peters, G.P.; Tavoni, M.; Andrew, R.M.; Ciais, P.; Jackson, R.B.; Jones, C.D.; Kraxner, F.; Nakicenovic, N.; et al. Betting on negative emissions. Nat. Clim. Chang. 2014, 4, 850. [Google Scholar] [CrossRef]
- Raftery, A.E.; Zimmer, A.; Frierson, D.M.W.; Startz, R.; Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Chang. 2017, 7, 637. [Google Scholar] [CrossRef]
- Tzimas, E.; Georgakaki, A.; Peteves, S. Future Fossil Fuel Electricity Generation in Europe: Options and Consequences; Joint Research Center, European Commission: Petten, The Netherlands, 2009. [Google Scholar]
- Green, R.; Staffell, I. Electricity in Europe: Exiting fossil fuels. Oxf. Rev. Econ. Policy 2016, 32, 282–303. [Google Scholar] [CrossRef] [Green Version]
- Moreno, B.; García-Álvarez, M.T. Analyzing the impact of fossil fuel import reliance on electricity prices: The case of the Iberian Electricity Market. Energy Environ. 2017, 28, 687–705. [Google Scholar] [CrossRef]
- Hartley, D. Perspectives on renewable energy and the environment. In Energy and the environment in the 21st Century; Tester, J., Wood, D., Ferrari, N., Eds.; MIT: Cambridge, MA, USA, 1990. [Google Scholar]
- McGowan, J. Large-scale solar/wind electrical production systems-predictions for the 21st Century. In Energy and the environment in the 21st Century; Tester, J., Wood, D., Ferrari, N., Eds.; MIT: Cambridge, MA, USA, 1990. [Google Scholar]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Kaunda, C.S.; Kimambo, C.Z.; Nielsen, T.K. Hydropower in the Context of Sustainable Energy Supply: A Review of Technologies and Challenges. ISRN Renew. Energy 2012. [Google Scholar] [CrossRef]
- Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 Concerning Common Rules for the Internal Market in Electricity; Official Journal of the European Union: Brussels, Belgium, 1996.
- Míguez, J.L.; López-González, L.M.; Sala, J.M.; Porteiro, J.; Granada, E.; Morán, J.C.; Juárez, M.C. Review of compliance with EU-2010 targets on renewable energy in Galicia (Spain). Renew. Sustain. Energy Rev. 2006, 10, 225–247. [Google Scholar] [CrossRef]
- Sims, G.P. Hydroelectric energy. Energy Policy 1991, 19, 776–786. [Google Scholar] [CrossRef]
- Valero, E. Characterization of the Water Quality Status on a Stretch of River Lérez around a Small Hydroelectric Power Station. Water 2012, 4, 815–834. [Google Scholar] [CrossRef] [Green Version]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Müller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef] [Green Version]
- Ziv, G.; Baran, E.; Nam, S.; Rodriguez-Iturbe, I.; Levin, S.A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. USA 2012, 109, 5609–5614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benchimol, M.; Peres, C.A. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia. PLoS ONE 2015, 10, e0129818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yüksel, I. Hydropower in Turkey for a clean and sustainable energy future. Renew. Sustain. Energy Rev. 2008, 12, 1622–1640. [Google Scholar] [CrossRef]
- INEGA. Balance Enexetico de Galicia. 2007. Available online: http://www.inega.gal/publicacions/balanceenerxetico/publicacion_0017.html (accessed on 20 November 2019).
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Official Journal of the European Union: Brussels, Belgium, 2000.
- Alba-Tercedor, J.; Sánchez-Ortega, A. A quick and simple method to evaluate biological quality of running fresh water based on Hellawell (1978). Limnetica 1988, 4, 51–56. [Google Scholar]
- Alba-Tercedor, J.; Jáimez-Cuéllar, P.; Álvarez, M.; Avilés, J.; Bonada, N.; Casas, J.; Mellado, A.; Ortega, M.; Pardo, I.; Prat, N. Characterization of the ecological status of the Iberian Mediterranean rivers using the index IBWP (former BMWP’). Limnetica 2002, 21, 175–185. [Google Scholar]
- Toro, M.; Robles, S.; Tejero, I.; Cristóbal, E.; Velasco, S.; Sáchez, J.R.; Pujante, A. Group 32. Ecological Type 21. Siliceous Cantabric-Atlantic Rivers. Preliminary Ecological Basis for Conservation of Habitat Types of Community Interest in Spain. Ministerio de Medio Ambiente y Medio Rural Marino: Madrid, Spain, 2009; Available online: http://www.jolube.es/Habitat_Espana/documentos/32%20T21.pdf (accessed on 19 November 2019).
- Mustow, S.E. Biological monitoring of rivers in Thailand: Use and adaptation of the BMWP score. Hydrobiologia 2002, 479, 191–229. [Google Scholar] [CrossRef]
- Paisley, W.J.; Trigg, M.F.; Walley, D.J. Revision of the biological monitoring working party (bmwp) score system: Derivation of present-only and abundance-related scores from field data. River Res. Appl. 2014, 30, 887–904. [Google Scholar] [CrossRef] [Green Version]
- Munné, A.; Prat, N.; Solà, C.; Bonada, N.; Rieradevall, M. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 147–163. [Google Scholar] [CrossRef]
- Colwell, D.M.; Hix, S.R. Adaptation of the QBR index for use in riparian forests of central Ohio. In Proceedings of the 16th Central Hardwood Forest Conference, West Lafayette, IN, USA, 8–9 April 2008; pp. 331–340. [Google Scholar]
- Tüzün, İ.; Albayrak, İ. The effect of disturbances to habitat quality on otter (Lutra lutra) activity in the river Kızılırmak (Turkey): A case study. Turk. J. Zool. 2005, 29, 327–335. [Google Scholar]
- Miserendino, A.M.; Casaux, M.L.; Archangelsky, R.; di Prinzio, M.; Brand, C.Y.; Kutschker, C. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams. Sci. Total Environ. 2011, 409, 612–624. [Google Scholar] [CrossRef]
- McKight, J.; Najab, P.E. Kruskal-wallis test. Corsini Encycl. Psychol. 2010. [Google Scholar] [CrossRef]
- Jesus, T.; Formigo, N.; Santos, P.; Tavares, G. Impact Evaluation of the Vila Viçosa Small Hydroelectric Power Plant (Portugal) on the Water Quality and on the Dynamics of the Benthic Macroinvertebrate Communities of the Ardena River. Limnetica 2004, 23, 241–256. [Google Scholar]
- Santos, J.; Ferreira, M.; Pinheiro, A.; Bochechas, J. Effects of Small Hydropower Plants on Fish Assemblages in Medium-Sized Streams in Central and Northern Portugal. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 373–388. [Google Scholar] [CrossRef]
- ORDEN ARM/2656/2008, de 10 de septiembre, por la que se aprueba la instrucción de planificación hidrológica; Boletín Oficial del Estado (BOE): Madrid, Spain, 2008; Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2008-15340 (accessed on 18 November 2019).
- Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life; Official Journal of the European Union: Brussels, Belgium, 2006.
- Galician Plan of Management of Fish Resources and Continental Aquatic Ecosystems; Xunta de Galicia: Santiago de Compostela, Spain, 2005; Available online: https://issuu.com/axentesforestais/docs/plan_galego_de_recursos_pisc_colas_e_ecosistemas_a (accessed on 21 November 2019).
- Ansemil, E.M.; Membiela, P. The Low Mineralized and Fast Turnover Watercourses of Galicia. Limnetica 1992, 8, 125–130. [Google Scholar]
- Costas, N.; ÁLvarez, M.; Pardo, I. Characterization of an Atlantic salmon Salmo salar stream at the southern limit of its eastern Atlantic distribution. J. Fish Biol. 2009, 75, 2552–2570. [Google Scholar] [CrossRef]
- Copeman, V.A. The Impact of Micro-Hydropower on the Aquatic Environment. Water Environ. J. 1997, 11, 431–435. [Google Scholar] [CrossRef]
- Almodóvar, A.; Nicola, G.G. Effects of a small hydropower station upon brown trout Salmo trutta L. in the River Hoz Seca (Tagus basin, Spain) one year after regulation. Regul. Rivers Res. Manag. 1999, 15, 477–484. [Google Scholar] [CrossRef]
- Vázquez, F.M.; de Anta, R.C. Niveles Genéricos De Referencia De Metales Pesados Y Otros Elementos Traza En Suelos De Galicia. Xunta Galicia 2009. [Google Scholar] [CrossRef]
Plants | Temperature (n = 12) | pH (n = 12) | Dissolved Oxygen (n = 12) | Conductivity (n = 12) |
---|---|---|---|---|
San Xusto (Lerez) | 0.249, p = 0.969 | 2.452, p = 0.484 | 3.557, p = 0.313 | 0.642, p = 0.887 |
Hermida (Umia) | 2.176, p = 0.537 | 0.960, p = 0.811 | 0.281, p = 0.964 | 0, p = 1 |
Touro (Ulla) | 2.573, p = 0.276 | 7.896, p = 0.019 | 0.412, p = 0.814 | 0.293, p = 0.8634 |
Gomil (Mandeo) | 0.530, p = 0.767 | 1.794, p = 0.408 | 1.963, p = 0.375 | 0.0858, p = 0.958 |
Parameters | Reference Condition | Threshold Good/Moderate |
---|---|---|
Temperature (°C) | 13.00 | 10.4–15.6 |
pH | 7.00 | 6.0–8.4 |
Dissolved oxygen (mg/L) | 9.00 | 6.7 |
Conductivity (mS/cm) | 0.04 | <0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, X.; Valero, E.; Torre-Rodríguez, N.d.l.; Acuña-Alonso, C. Influence of Small Hydroelectric Power Stations on River Water Quality. Water 2020, 12, 312. https://doi.org/10.3390/w12020312
Álvarez X, Valero E, Torre-Rodríguez Ndl, Acuña-Alonso C. Influence of Small Hydroelectric Power Stations on River Water Quality. Water. 2020; 12(2):312. https://doi.org/10.3390/w12020312
Chicago/Turabian StyleÁlvarez, Xana, Enrique Valero, Natalia de la Torre-Rodríguez, and Carolina Acuña-Alonso. 2020. "Influence of Small Hydroelectric Power Stations on River Water Quality" Water 12, no. 2: 312. https://doi.org/10.3390/w12020312
APA StyleÁlvarez, X., Valero, E., Torre-Rodríguez, N. d. l., & Acuña-Alonso, C. (2020). Influence of Small Hydroelectric Power Stations on River Water Quality. Water, 12(2), 312. https://doi.org/10.3390/w12020312