Combination of Ecological Engineering Procedures Applied to Morphological Stabilization of Estuarine Banks after Dredging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Disturbance Factors
3. Results
3.1. Cardielos Section
3.2. Portuzelo Section
4. Discussion
5. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Delaune, R.; Gambrell, R. Role of sedimentation in isolating metal contaminants in wetland environments. J. Environ. Sci. Heal.- Part A: Environ. Sci. Eng. Toxicol. 1996, 31, 2349–2362. [Google Scholar] [CrossRef]
- Tiner, R.W. Wetlands of the United States: Current Status and Recent Trends; US Fish & Wildlife Service, National Wetlands Inventory: Washington DC, USA, 1984. [Google Scholar]
- Stevenson, J.; Kearney, M.S.; Pendleton, E.C. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Mar. Geol. 1985, 67, 213–235. [Google Scholar] [CrossRef]
- Nyman, J.A.; Carloss, M.; Delaune, R.D.; Patrick, W.H. Erosion rather than plant dieback as the mechanism of marsh loss in an estuarine marsh. Earth Surf. Process. Landforms 1994, 19, 69–84. [Google Scholar] [CrossRef]
- Danielsen, F.; Sørensen, M.K.; Olwig, M.F.; Selvam, V.; Parish, F.; Hiraishi, T.; Karunagaran, V.M.; Rasmussen, M.S.; Hansen, L.B.; Quarto, A.; et al. The Asian Tsunami: A Protective Role for Coastal Vegetation. Sci. 2005, 310, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valyrakis, M.; Diplas, P.; Dancey, C.L.; Greer, K.; Celik, A.O. Role of instantaneous force magnitude and duration on particle entrainment. J. Geophys. Res. Space Phys. 2010, 115, 1–18. [Google Scholar] [CrossRef]
- Valyrakis, M.; Diplas, P.; Dancey, C.L. Entrainment of coarse particles in turbulent flows: An energy approach. J. Geophys. Res. Earth Surf. 2013, 118, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.M.; Luque, C.J.; Castellanos, E.M.; Figueroa, M.E. Causes and consequences of salt-marsh erosion in an Atlantic estuary in SW Spain. J. Coast. Conserv. 2000, 6, 89–96. [Google Scholar] [CrossRef]
- Pezeshki, S.R.; DeLaune, R.D. Factors controlling coastal wetland formation and losses in the northern Gulf of Mexico. Recent Res. Devel. Coast. Res. 1996, 1, 13–27. [Google Scholar]
- Pinto, A.; Fernandes, L.F.S.; Maia, R. Monitoring Methodology of Interventions for Riverbanks Stabilization: Assessment of Technical Solutions Performance. Water Resour. Manag. 2016, 30, 5281–5298. [Google Scholar] [CrossRef]
- Pinto, A.A.S.; Fernandes, L.F.S.; de Oliveira Maia, R.J.F. A method for selecting suitable technical solutions to support sustainable riverbank stabilisation. Area 2019, 51, 285–298. [Google Scholar] [CrossRef]
- Samadi, A.; Amiri-Tokaldany, E.; Davoudi, M.; Darby, S. Experimental and numerical investigation of the stability of overhanging riverbanks. Geomorphol. 2013, 184, 1–19. [Google Scholar] [CrossRef]
- Nardi, L.; Rinaldi, M.; Solari, L. An experimental investigation on mass failures occurring in a riverbank composed of sandy gravel. Geomorphology 2012, 163, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Gutierrez, M.; Diplas, P.; Petrie, J.; Wayllace, A.; Lu, N.; Muñoz, J.J. Comparison of testing techniques and models for establishing the SWCC of riverbank soils. Eng. Geol. 2010, 110, 1–10. [Google Scholar] [CrossRef]
- Yagci, O.; Celik, M.F.; Kitsikoudis, V.; Kirca, V.O.; Hodoglu, C.; Valyrakis, M.; Duran, Z.; Kaya, S. Scour patterns around isolated vegetation elements. Adv. Water Resour. 2016, 97, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Valyrakis, M.; Williams, R. Flow Hydrodynamics across Open Channel Flows with Riparian Zones: Implications for Riverbank Stability. Water 2017, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Nardi, L.; Campo, L.; Rinaldi, M. Quantification of riverbank erosion and application in risk analysis. Nat. Hazards 2013, 69, 869–887. [Google Scholar] [CrossRef]
- Samadi, A.; Amiri-Tokaldany, E.; Darby, S. Identifying the effects of parameter uncertainty on the reliability of riverbank stability modelling. Geomorphology 2009, 106, 219–230. [Google Scholar] [CrossRef]
- Kummu, M.; Lu, X.X.; Rasphone, A.; Sarkkula, J.; Koponen, J. Riverbank changes along the Mekong River: Remote sensing detection in the Vientiane–Nong Khai area. Quat. Int. 2008, 186, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Julian, J.P.; Torres, R. Hydraulic erosion of cohesive riverbanks. Geomorphology 2006, 76, 193–206. [Google Scholar] [CrossRef]
- Evette, A.; LaBonne, S.; Rey, F.; Liébault, F.; Jancke, O.; Girel, J. History of Bioengineering Techniques for Erosion Control in Rivers in Western Europe. Environ. Manag. 2009, 43, 972–984. [Google Scholar] [CrossRef]
- Evette, A.; Balique, C.; Lavaine, C.; Rey, F.; Prunier, P. Using ecological and biogeographical features to produce a typology of the plant species used in bioengineering for riverbank protection in europe. River Res. Appl. 2012, 28, 1830–1842. [Google Scholar] [CrossRef]
- Redelstein, R.; Zotz, G.; Balke, T. Seedling stability in waterlogged sediments: an experiment with saltmarsh plants. Mar. Ecol. Prog. Ser. 2018, 590, 95–108. [Google Scholar] [CrossRef]
- Cao, H.; Zhu, Z.; Balke, T.; Zhang, L.; Bouma, T.J. Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration. Limnol. Oceanogr. 2018, 63, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Cortes, R.M.V.; Sanches Fernandes, L.F.; Cardão, J.M.N.; Jesus, J. Alteração da reposição sedimentológica no estuário do Lima: consequências erosivas e limites da restauração à escala local. In Proceedings of the Actas I Congresso Ibério de Restauração Fluvial “Retaurarios”, Léon, Spain, 2011. [Google Scholar]
- Sanches Fernandes, L.F.; Cortes, R.M.V.; Cardão, J.M.N.; Jesus, J. Processos erosivos no estuário do Lima e ações de requalificação à escala local. In Proceedings of the 3o Seminário sobre Gestão de Bacias Hidrográficas, APRH, Viana do Castelo, Portugal, 2011. [Google Scholar]
- Cardão, J.M.N.; Sanches Fernandes, L.F.; Cortes, R.M.V. Implementação de técnicas de engenharia natural e hidráulica fluvial na requalificação dum rio em zona urbana: o caso da ribeira da Castanheira (rio Tinto). In Proceedings of the World Forum on Soil Bioengineering and Land Management New Challenges, Lisboa, Portugal, 2012. [Google Scholar]
- Cortes, R.M.V.; Oliveira, D.G.; Lourenço, J.M.; Sanches Fernandes, L.F. Different approaches for the use of bioengineering techniques in the rehabilitation of lotic and lentic systems: two case studies in North Portugal. In Proceedings of the Fifth International Symposium of Ecohydraulics, Madrid, Spain, 2014; Jálon, D.G., Martinez, P.V., Eds.; IAHR: Madrid, Spain, 2004. [Google Scholar]
- Costa-Dias, S.; Sousa, R.; Antunes, C. Ecological quality assessment of the lower Lima Estuary. Mar. Pollut. Bull. 2010, 61, 234–239. [Google Scholar] [CrossRef]
- PBH Plano de Bacia Hidrográfica do Rio Lima. D.R. 11/2002. 2002.
- INAG Plano Específico de Gestão de Extracção de Inertes em Domínio Hídrico para as Bacias do Lima e do Cávado. 1a e 2a fases. 2005.
- Del Tánago, M.G.; Bejarano, M.; De Jalon, D.G.; Schmidt, J. Biogeomorphic responses to flow regulation and fine sediment supply in Mediterranean streams (the Guadalete River, southern Spain). J. Hydrol. 2015, 528, 751–762. [Google Scholar] [CrossRef]
- Tena, A.; Batalla, R.; Vericat, D.; López-Tarazón, J. Suspended sediment dynamics in a large regulated river over a 10-year period (the lower Ebro, NE Iberian Peninsula). Geomorphology 2011, 125, 73–84. [Google Scholar] [CrossRef]
- Schmidt, J.C.; Wilcock, P.R. Metrics for assessing the downstream effects of dams. Water Resour. Res. 2008, 44, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Alauddin, M.; Tsujimoto, T. Optimum configuration of groynes for stabilization of alluvial rivers with fine sediments. Int. J. Sediment Res. 2012, 27, 158–167. [Google Scholar] [CrossRef]
- Cardoso, R.; Araújo, M.F.; Freitas, M.C.; Fatela, F. Geochemical chracterisation of sediments from marginal environments of Lima estuary (NW Portugal). e-Terra 2008, 5, 1–11. [Google Scholar]
- Bergh, E.V.D.; Van Damme, S.; Graveland, J.; De Jong, D.; Baten, I.; Meire, P. Ecological Rehabilitation of the Schelde Estuary (The Netherlands-Belgium; Northwest Europe): Linking Ecology, Safety Against Floods, and Accessibility for Port Development. Restor. Ecol. 2005, 13, 204–214. [Google Scholar] [CrossRef]
- Morris, J.T. Ecological engineering in intertidial saltmarshes. Hydrobiologia 2007, 577, 161–168. [Google Scholar] [CrossRef]
- García-Novo, F.; García, J.C.E.; Carotenuto, L.; Sevilla, D.G.; Faso, R.P.F.L. The restoration of El Partido stream watershed (Doñana Natural Park). Ecol. Eng. 2007, 30, 122–130. [Google Scholar] [CrossRef]
- Jacobs, S.; Beauchard, O.; Struyf, E.; Cox, T.; Maris, T.; Meire, P. Restoration of tidal freshwater vegetation using controlled reduced tide (CRT) along the Schelde Estuary (Belgium). Estuarine, Coast. Shelf Sci. 2009, 85, 368–376. [Google Scholar] [CrossRef]
- Gallego-Fernandez, J.B.; Novo, F.G. High-intensity versus low-intensity restoration alternatives of a tidal marsh in Guadalquivir estuary, SW Spain. Ecol. Eng. 2007, 30, 112–121. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Van Oosterhout, M.P.; De Vlieger, B.; Goodson, J.M. Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Res. Appl. 2006, 22, 667–680. [Google Scholar] [CrossRef]
- Noe, G.B.; Hupp, C.R. Retention of Riverine Sediment and Nutrient Loads by Coastal Plain Floodplains. Ecosystems 2009, 12, 728–746. [Google Scholar] [CrossRef]
- Curran, J.C.; Hession, W.C. Vegetative impacts on hydraulics and sediment processes across the fluvial system. J. Hydrol. 2013, 505, 364–376. [Google Scholar] [CrossRef]
- Geerling, G.W.; Labrador-Garcia, M.; Clevers, J.G.P.W.; Ragas, A.M.J.; Smits, A.J.M. Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data. Int. J. Remote Sens. 2007, 28, 4263–4284. [Google Scholar] [CrossRef]
- Sousa, R.; Dias, S.; Antunes, C. Subtidal macrobenthic structure in the lower Lima estuary, NW of Iberian Peninsula. In Annales Zoologici Fennici; Finnish Zoological and Botanical Publishing Board: Helsinki, Finland, 2007; Volume 44, pp. 303–313. [Google Scholar]
- Habersack, H.M. Radio-tracking gravel particles in a large braided river in New Zealand: a field test of the stochastic theory of bed load transport proposed by Einstein. Hydrol. Process. 2001, 15, 377–391. [Google Scholar] [CrossRef]
Bank Profile | Techniques | Species |
---|---|---|
Bank base | Small groynes | - |
Rip-rap (50/80 cm) | - | |
Large groynes | - | |
First layer (close to the water) | Live stakes | Salinity-resistant shrubs (Juncus spp., Typha angustifólia, Phalaris arundinácea, Agrostis stolonifera, Scirpus maritimus, Festuca arundinácea, Phragmites spp., Tamaryx tamaryx) |
Gabion mattress | - | |
Second layer | Willow fascine | Salix atrocinerea |
Vegetation roll | Semi-halophyl macrophytes | |
Tridimensional geomats | Salix atrocinerea; Salix salvifolia | |
Hydroseeding | Lolium perenne; Festuca pratensis; Poa pratensis; Lolium multiflorum; Lupinus luteus; Dactylis glomerata; Trifolium subterraneum | |
Live stakes | Juncus spp., Salix atrocinerea; Salix salvifolia |
Bank Profile | Techniques | Vegetation Species |
---|---|---|
Bank base | Rip-rap (60/80 cm) | - |
First layer (close to the water) | Geocells | - |
Bidimensional geomats (synthetic and organic) | - | |
Live stakes | Tamarix tamarix; Juncus spp. | |
Second layer | Planting | Salix atrocinerea; Salix salviifolia |
Before | After | ||||
---|---|---|---|---|---|
Manning Roughness (n) | 0.030–0.050 | 0.023–0.036 | |||
Cross-Section | Return Period (years) | Shear Stress (N/m2) | Current Velocity (m/s) | Shear Stress (N/m2) | Current Velocity (m/s) |
(Cardielos) | 2.33 | 6.13 | 0.50 | 4.34 | 0.58 |
5 | 7.56 | 0.57 | 5.45 | 0.66 | |
100 | 14.58 | 0.84 | 10.76 | 0.98 | |
(Portuzelo) | 2.33 | 10.66 | 0.68 | 3.93 | 0.61 |
5 | 14.05 | 0.79 | 5.19 | 0.72 | |
100 | 25.51 | 1.10 | 10.39 | 1.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanches Fernandes, L.F.; Sampaio Pinto, A.A.; Salgado Terêncio, D.P.; Leal Pacheco, F.A.; Vitor Cortes, R.M. Combination of Ecological Engineering Procedures Applied to Morphological Stabilization of Estuarine Banks after Dredging. Water 2020, 12, 391. https://doi.org/10.3390/w12020391
Sanches Fernandes LF, Sampaio Pinto AA, Salgado Terêncio DP, Leal Pacheco FA, Vitor Cortes RM. Combination of Ecological Engineering Procedures Applied to Morphological Stabilization of Estuarine Banks after Dredging. Water. 2020; 12(2):391. https://doi.org/10.3390/w12020391
Chicago/Turabian StyleSanches Fernandes, Luís Filipe, António Augusto Sampaio Pinto, Daniela Patrícia Salgado Terêncio, Fernando António Leal Pacheco, and Rui Manuel Vitor Cortes. 2020. "Combination of Ecological Engineering Procedures Applied to Morphological Stabilization of Estuarine Banks after Dredging" Water 12, no. 2: 391. https://doi.org/10.3390/w12020391
APA StyleSanches Fernandes, L. F., Sampaio Pinto, A. A., Salgado Terêncio, D. P., Leal Pacheco, F. A., & Vitor Cortes, R. M. (2020). Combination of Ecological Engineering Procedures Applied to Morphological Stabilization of Estuarine Banks after Dredging. Water, 12(2), 391. https://doi.org/10.3390/w12020391