Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities
Abstract
:1. Introduction
2. Methodology
2.1. Survey
2.2. Literature Review
3. Results—Drinking Water Temperature from Source to Tap
3.1. Monitoring Practices
3.2. Drinking Water Temperature at The Source
3.3. Drinking Water Temperature in the Transport and Distribution System
3.4. Drinking Water Temperature in the Domestic Drinking Water Installation and at the Tap
3.5. Drinking Water from Source to Tap
3.6. Consequences of Higher Temperatures and Legislation
4. Challenges and Opportunities
4.1. Trends
4.2. Knowledge Gaps and Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smeets, P.W.M.H.; Medema, G.J.; Van Dijk, J.C. The Dutch secret: How to provide safe drinking water without chlorine in The Netherlands. Drink. Water Eng. Sci. 2009, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Uhl, W.; Schaule, G. Establishment of HPC(R2A) for regrowth control in non-chlorinated distribution systems. Int. J. Food Microbiol. 2004, 92, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Rosario-Ortiz, F.; Rose, J.; Speight, V.; Gunten, U.v.; Schnoor, J. How do you like your tap water? Science 2016, 351, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Douterelo, I.; Sharpe, R.L.; Husband, S.; Fish, K.E.; Boxall, J.B. Understanding microbial ecology to improve management of drinking water distribution systems. Wires Water 2019, 6, e01325. [Google Scholar] [CrossRef] [Green Version]
- Blokker, M.; Agudelo-Vera, C.; Moerman, A.; Van Thienen, P.; Pieterse-Quirijns, I. Review of applications for SIMDEUM, a stochastic drinking water demand model with a small temporal and spatial scale. Drink. Water Eng. Sci. 2017, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Douterelo, I.; Sharpe, R.L.; Boxall, J.B. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Res. 2013, 47, 503–516. [Google Scholar] [CrossRef]
- Liu, G.; Verberk, J.Q.J.C.; Van Dijk, J.C. Bacteriology of drinking water distribution systems: An integral and multidimensional review. Appl. Microbiol. Biotechnol. 2013, 97, 9265–9276. [Google Scholar] [CrossRef]
- Prest, E.I.; Hammes, F.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Front. Microbiol. 2016, 7, 45. [Google Scholar] [CrossRef]
- Sharpe, R.L.; Biggs, C.A.; Boxall, J.B. Hydraulic conditioning to manage potable water discolouration. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 3–13. [Google Scholar]
- Blokker, E.J.M.; Pieterse-Quirijns, E.J.; Vogelaar, A.J.; Sperber, V. Bacterial Growth Model in the Drinking Water Distribution System—An Early Warning System; Prepared 2014.023; KWR: Nieuwegein, The Netherlands, 2012. [Google Scholar]
- Blokker, E.J.M.; Pieterse-Quirijns, I. Modeling temperature in the drinking water distribution system. J. Am. Water Works Assoc. 2013, 105, E19–E28. [Google Scholar] [CrossRef]
- De Pasquale, A.M.; Giostri, A.; Romano, M.C.; Chiesa, P.; Demeco, T.; Tani, S. District heating by drinking water heat pump: Modelling and energy analysis of a case study in the city of Milan. Energy 2017, 118, 246–263. [Google Scholar] [CrossRef]
- van der Zwan, S.; Pothof, I.; Dignum, M. Multifunctional design to prevent excessive heating of drinking water. In Proceedings of the IWA WCE 2012, Dublin, Ireland, 13–18 May 2012. [Google Scholar]
- Zlatanovic, L.; Moerman, A.; van der Hoek, J.P.; Vreeburg, J.; Blokker, M. Development and validation of a drinking water temperature model in domestic drinking water supply systems. Urban Water J. 2017, 14, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, L.; Figueiredo, D.; Covas, D.; Menaia, J. Integrating water temperature in chlorine decay modelling: A case study. Urban Water J. 2017, 14, 1097–1101. [Google Scholar] [CrossRef]
- Ingerson-Mahar, M.; Reid, A. Microbes in Pipes: The Microbiology of the Water Distribution System; American Academy of Microbiology: Boulder, CO, USA, 2013. [Google Scholar]
- DiGiano, F.A.; Zhang, W. Uncertainty Analysis in a Mechanistic Model of Bacterial Regrowth in Distribution Systems. Environ. Sci. Technol. 2004, 38, 5925–5931. [Google Scholar] [CrossRef] [PubMed]
- Fisher, I.; Kastl, G.; Sathasivan, A. A suitable model of combined effects of temperature and initial condition on chlorine bulk decay in water distribution systems. Water Res. 2012, 46, 3293–3303. [Google Scholar] [CrossRef]
- Machell, J.; Boxall, J. Modeling and field work to investigate the relationship between age and quality of tap water. J. Water Resour. Plan. Manag. 2014, 140, 04014020. [Google Scholar] [CrossRef]
- Blokker, E.J.M.; van Osch, A.M.; Hogeveen, R.; Mudde, C. Thermal energy from drinking water and cost benefit analysis for an entire city. J. Water Clim. Chang. 2013, 4, 11–16. [Google Scholar] [CrossRef]
- Agudelo-Vera, C.; Blokker, M.; De Kater, H.; Lafort, R. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system. Drink. Water Eng. Sci. Discuss. 2017, 10, 83–91. [Google Scholar] [CrossRef]
- Drink Water Directive. Drinkwaterbesluit. Available online: http://wetten.overheid.nl/BWBR0030111/geldigheidsdatum_25-02-2013 (accessed on 2 December 2019).
- Piller, O.; Tavard, L. Modeling the Transport of Physicochemical Parameters for Water Network Security. Procedia Eng. 2014, 70, 1344–1352. [Google Scholar] [CrossRef]
- Montoya-Pachongo, C.; Douterelo, I.; Noakes, C.; Camargo-Valero, M.A.; Sleigh, A.; Escobar-Rivera, J.-C.; Torres-Lozada, P. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks. Sci. Total Environ. 2018, 616, 345–354. [Google Scholar] [CrossRef]
- Jacobs, H.; Botha, B.; Blokker, M. Household Hot Water Temperature–An Analysis at End-Use Level. Proceedings of WDSA/CCWI Joint Conference, Kingston, ON, Canada, 23–25 July 2018. [Google Scholar]
- Novakova, J.; Rucka, J. Undesirable consequences of increased water temperature in drinking water distribution system. Mm Sci. J. 2019, 2019, 3695–3701. [Google Scholar] [CrossRef] [Green Version]
- South African National Standard. South African National Standard. South African National Standard SANS 2001-DP1 Edition 1.1. In Construction Works Part DP1: Earthworks for Buried Pipelines and Prefabricated Culverts; 2011 Edition 1.1 South African National Standard—Construction Works Part DP1: Earthworks for Buried Pipelines and Prefabricated Culverts; SABS Standards: Pretoria, South Africa, 2011; ISBN 978-0-626-25160-4. [Google Scholar]
- Services, W. Guidelines for Design of Water Reticulation and Pumping Stations; Watercare Services Ltd.: Auckland, New Zealand, 2013. [Google Scholar]
- Agudelo-Vera, C.M.; Blokker, E.J.M.; van der Wielen, P.W.J.J.; Raterman, B. Drinking Water Temperature in Future Urban Areas; BTO 2015.012; KWR: Nieuwegein, The Netherlands, 2015. [Google Scholar]
- Herb, W.R.; Janke, B.; Mohseni, O.; Stefan, H.G. Ground surface temperature simulation for different land covers. J. Hydrol. 2008, 356, 327–343. [Google Scholar] [CrossRef]
- Mihalakakou, G. On estimating soil surface temperature profiles. Energy Build. 2002, 34, 251–259. [Google Scholar] [CrossRef]
- Menberg, K.; Bayer, P.; Zosseder, K.; Rumohr, S.; Blum, P. Subsurface urban heat islands in German cities. Sci. Total Environ. 2013, 442, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Menberg, K.; Blum, P.; Schaffitel, A.; Bayer, P. Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island. Environ. Sci. Technol. 2013, 47, 9747–9755. [Google Scholar] [CrossRef]
- Müller, N.; Kuttler, W.; Barlag, A.-B. Analysis of the subsurface urban heat island in Oberhausen, Germany. Clim. Res. 2014, 58, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Shang, F.; Uber, J.G. EPANET Multi-Species Extension User’s Manual; EPA/600/S-07/021; EPA: Cincinnati, OH, USA, 2008.
- Lautenschlager, K.; Boon, N.; Wang, Y.; Egli, T.; Hammes, F. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition. Water Res. 2010, 44, 4868–4877. [Google Scholar] [CrossRef]
- Lipphaus, P.; Hammes, F.; Kötzsch, S.; Green, J.; Gillespie, S.; Nocker, A. Microbiological tap water profile of a medium-sized building and effect of water stagnation. Environ. Technol. 2014, 35, 620–628. [Google Scholar] [CrossRef]
- Jacobs, H. Personal Communication. 13 February 2020. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- WHO. A Global Overview of National Regulations and Standards for Drinking-Water Quality; WHO: Geneva, Switzerland, 2018; Handleiding Legionellapreventie in leidingwater. Richtlijnen voor prioritaire installaties. [Google Scholar]
- ISSO 55.1. Handleiding. Legionellapreventie in Leidingwater. Richtlijnen Voor Prioritaire Installaties; ISSO: Rotterdam, The Netherlands, 2012; pp. 94–95. [Google Scholar]
- Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. In Boletín Oficial del Estado 2003; Ministerio de Sanidad y Consumo: Madrid, España, 1980; Volume 45.
- Real Decreto 865/2003, de 4 de julio, por el que se establecen los criterios higiénico-sanitarios para la prevención y control de la legionelosis. In Boletín Oficial del Estado 2003; Ministerio de Sanidad y Consumo: Madrid, España, 2003; Volume 171.
- Carrim, M.; Cohen, C.; de Gouveia, L.; Essel, V.; Mc Carthy, K.; Stewart, R.; Thomas, T.; von Gottberg, A.; Wolter, N. Legionnaires’disease: Nicd recommendations for diagnosis, management and public health response. Foreword Contents 2016, 14, 137. [Google Scholar]
- Britain, G. Control of Substances Hazardous to Health Regulations 2002; The Stationery Office: London, UK, 2002. [Google Scholar]
- Preciado, C.C.; Boxall, J.; Soria-Carrasco, V.; Douterelo, I. Effect of temperature increase in bacterial and fungal communities of chlorinated drinking water distribution systems. Access Microbiol. 2019, 1. [Google Scholar] [CrossRef]
- van der Kooij, D.; van der Wielen, P. Microbial Growth in Drinking Water Supplies. Problems, Causes, Control and Research Needs; Kooij, D.v.d., Wielen, P.W.v.d., Eds.; Iwa Publishing: London, UK, 2013. [Google Scholar]
- Stone, W.; Louw, T.M.; Gakingo, G.K.; Nieuwoudt, M.J.; Booysen, M.J. A potential source of undiagnosed Legionellosis: Legionella growth in domestic water heating systems in South Africa. Energy Sustain. Dev. 2019, 48, 130–138. [Google Scholar] [CrossRef] [Green Version]
- WHO. Legionella and the Prevention of Legionellosis; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- van der Lugt, W.; Euser, S.M.; Bruin, J.P.; den Boer, J.W.; Yzerman, E.P.F. Wide-scale study of 206 buildings in The Netherlands from 2011 to 2015 to determine the effect of drinking water management plans on the presence of Legionella spp. Water Res. 2019, 161, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Söderberg, M.A.; Rossier, O.; Cianciotto, N.P. The type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J. Bacteriol. 2004, 186, 3712–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blokker, E.J.M.; Schaap, P.G. Effecten van Temperatuur op Bruinwaterrisico; KWR 2015.091; KWR: Nieuwegein, The Netherlands, 2015. [Google Scholar]
- van Summeren, J.; Raterman, B.; Vonk, E.; Blokker, M.; van Erp, J.; Vries, D. Influence of Temperature, Network Diagnostics, and Demographic Factors on Discoloration-Related Customer Reports. Procedia Eng. 2015, 119, 416–425. [Google Scholar] [CrossRef]
- Francisque, A.; Rodriguez, M.J.; Miranda-Moreno, L.F.; Sadiq, R.; Proulx, F. Modeling of heterotrophic bacteria counts in a water distribution system. Water Res. 2009, 43, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Niquette, P.; Servais, P.; Savoir, R. Bacterial Dynamics in the drinking water distribution system of Brussels. Water Res. 2001, 35, 675–682. [Google Scholar] [CrossRef]
- Vital, M.; Dignum, M.; Magic-Knezev, A.; Ross, P.; Rietveld, L.; Hammes, F. Flow cytometry and adenosine tri-phosphate analysis: Alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems. Water Res. 2012, 46, 4665–4676. [Google Scholar] [CrossRef]
- Li, X.; Gu, D.-M.; Qi, J.-Y.; Ukita, M.; Zhao, H.-B. Modeling of residual chlorine in water distribution system. J. Environ. Sci. 2003, 15, 136–144. [Google Scholar]
- Sunny, I.; Husband, S.; Boxall, J. Seasonal Temperature and Turbidity Behaviour in Trunk Mains. Proceedings of WDSA/CCWI Joint Conference, Kingston, ON, Canada, 23–25 July 2018. [Google Scholar]
- van der Wielen, P.W.J.J.; van der Kooij, D. Nontuberculous Mycobacteria, Fungi, and Opportunistic Pathogens in Unchlorinated Drinking Water in The Netherlands. Appl. Environ. Microbiol. 2013, 79, 825. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.J.; Xi, C.; Raskin, L. Bacterial Community Structure in the Drinking Water Microbiome Is Governed by Filtration Processes. Environ. Sci. Technol. 2012, 46, 8851–8859. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.-b. Development of a model for predicting trihalomethanes propagation in water distribution systems. Chemosphere 2006, 62, 1028–1032. [Google Scholar] [CrossRef]
- Levin Ronnie, B.; Epstein Paul, R.; Ford Tim, E.; Harrington, W.; Olson, E.; Reichard Eric, G.U.S. drinking water challenges in the twenty-first century. Environ. Health Perspect. 2002, 110, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blokker, E.J.M.; Pieterse-Quirijns, E.J. Scenariostudies Voor Beperken Invloed Klimaatveranderingen op Temperatuur en Kwaliteit Drinkwater in Het Net; KWR 2012.017; KWR Watercycle Research Institute: Nieuwegein, The Netherlands, 2012. [Google Scholar]
- Nel, N.; Jacobs, H.E. Investigation into untreated greywater reuse practices by suburban households under the threat of intermittent water supply. J. Water Sanit. Hyg. Dev. 2019, 9, 627–634. [Google Scholar] [CrossRef]
- Agudelo-Vera, C.; Blokker, M.; Pieterse-Quirijns, I. Early Warning Systems to Predict Temperature in the Drinking Water Distribution Network. Procedia Eng. 2014, 70, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Agudelo-Vera, C.M.; Blokker, E.J.M.; Pieterse-Quirijns, E.J. Early warning system to forecast maximum temperature in drinking water distribution systems. J. Water Supply Res. Technol. AQUA 2015, 64, 496–503. [Google Scholar] [CrossRef]
- Hubeck-Graudal, H.; Kirstein, J.; Ommen, T.; Rygaard, M.; Elmegaard, B. Drinking water supply as low-temperature source in the district heating system: A case study for the city of Copenhagen. Energy 2020, 194, 116773. [Google Scholar] [CrossRef]
Country | Source | Water Treatment Plant | At the Customer |
---|---|---|---|
Colombia a | 13–28 °C | 16–26 °C | 25–28 °C |
Czech Republic | GW: 6–15 °C b | SW: 4–11 °C c | MW: 2–24 °C d |
France | GW: 12 °C e | RDT: 10 <25 °C f | |
Italy | 6–15°C g | ||
Netherlands h | SW: 2–23 °C GW: 12–13°C | RDT: 4–25 °C | |
Serbia | 9–16 °C i SW: 6–27 °C j GW: 12–18 °C j | 5–18 °C i | |
South Africa | 10–28 °C k | 20.5–24.5 °C l | |
Spain | 10–29 °C m | ||
United Kingdom | SW: 1–21°C n | SW: 2–26 °C o GW: 10–18 °C o MW: 2–23 °C o SW: 3–24 °C p GW: 11–12 °C p MW: 6–22 °C p | SW: 3–25 °C o GW: 4–27 °C o MW: 4–26 °C o |
Country | Legal Standard for Drinking Water Temperature | Legal Standard for Legionella |
---|---|---|
Colombia | No legal standard | No legal standard |
Czech Republic | Decree No. 252/2004 Coll. Decree laying down hygiene requirements for drinking and hot water and frequency and scope of drinking water control. The recommended temperature of drinking water at the customer‘s tap is between 8 and 12 °C. | Decree No. 252/2004 Coll. Decree laying down hygiene requirements for drinking and hot water and frequency and scope of drinking water control. This indicator is only set for hot water, where the limit of 100 HTP/100 mL is mandatory. This is the limit that applies to health and accommodation facilities, hot water supplied to showers of artificial or natural pools and drinking water used for hot water production; for other buildings, it is the recommended value to be sought through technical measures. The limit 0 HTP/100 mL as the highest limit value applies to wards of hospitals where immunocompromised patients are located |
France | The temperature at the consumer’s tap should be less than 25 °C (decree from 11 January 2017) in metropolitan France. | For water heating systems of public premises (hospital, hostel, camping, retreat houses, etc.) and cooling towers there is a regulation for environmental monitoring of Legionella. Since 1 August 2012, monitoring has been based on culture methods (as per Standard NF T90-431 “Detection and enumeration of Legionella spp. and of Legionella pneumophila by culture in agar media”. However, there are several detection and enumeration methods for Legionella that are under development or that are currently in use to greater or lesser extents. Since 1 January 2012, monitoring is mandatory on hot water networks for establishments receiving the public ANSES (French Agency for Food, Environmental and Occupational Health & Safety). |
Italy | No legal standard. However, it is recommended that temperature should range between 12 °C and 25 °C (Rapporti ISTISAN 97/9, Istituto Superiore della Sanità) | National guidelines from Conferenza Stato-Regioni del 07 maggio 2015. Drinking water temperature must be controlled to be outside of the critical range 20–50 °C to prevent Legionella infections. |
Netherlands | The Dutch Drinking Water Directive contains a maximum temperature limit of 25 °C at the tap [22]. | National guidelines concerning prevention of Legionella infections that state the drinking water temperature in a building may not exceed 25 °C, and hot water temperatures must be at least 55 °C [41]. |
Serbia | Drinking water quality standards (Official gazette of FRYu, No. 42/98 and 44/99, Official gazette of RS No. 28/19), temperature at the consumer is not set, but there is a requirement that it shall not be higher than the temperature at the source. | No standards |
Spain | No standards | There are two laws that establish some parameters related to Legionella: (a) Royal Decree 140/2003 of February 7th [42] establishing the sanitary criteria for quality of water for human consumption. In this law, there is no mention to temperature nor Legionella at all, but fixes all the values applied to suitable drinking water. It also fixes that sampling protocols for every water company. (b) Royal Decree 865/2003, of 4 July [43] establishes hygienic-sanitary criteria for the prevention and control of Legionnaires’ disease. The aim of this law consists of preventing and controlling legionellosis by adopting hygienic and sanitary measures in those facilities where Legionella can proliferate and spread. In this sense, it focuses on hot water facilities inside the buildings. The Building Technical Standards (CTE from its initials in Spanish) for the design of plumbing installations inside buildings CTE-DB H4 are based on the aforementioned law. There is a nonmandatory recommendation for drinking water to be under 20 °C where weather conditions allow. |
South Africa | No standards | No standards around the presence of Legionella in drinking water. The National Institute for Communicable Diseases [44] recommends: “The proper design, maintenance and temperature of potable water systems are the most important method for preventing the amplification of Legionella. Hot water should be stored above 60 °C and delivered to taps above 50 °C. Cold water should be stored below 20 °C, and dead legs or low flow areas eliminated.” Legionnaires disease is a notifiable health condition (compulsory notification) in South Africa. |
United Kingdom | No standards. The Water Fittings Regulations Guidance book advises to try and keep water supplied to 20 °C as a maximum. | Health and Safety England (HSE) have produced a document which is an “Approved Code of Practice” regarding controlling Legionella in water systems. The risk assessment, prevention and control of Legionella falls under the 1974 Health and Safety at Work Act (HSWA) and a framework for this assessment is covered by the Control of Substances Hazardous to Health Regulations 2002 (COSHH) [45]. Guidelines suggest control measures of:
|
Aspect | Location | Reference |
---|---|---|
Changes in bacterial dynamics | Network | [19,54,55,56] |
Increased chlorine decay | Network | [15,19,57] |
Increased discolouration risk | Network/tap | [19,52,53,58] |
L. pneumophila and opportunistic pathogens | [59] | |
Seasonal shifts in bacterial communities | Effluents of treatment utilities | [60] |
Trihalomethanes propagation in DWDS | Network | [61] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agudelo-Vera, C.; Avvedimento, S.; Boxall, J.; Creaco, E.; de Kater, H.; Di Nardo, A.; Djukic, A.; Douterelo, I.; Fish, K.E.; Iglesias Rey, P.L.; et al. Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water 2020, 12, 1049. https://doi.org/10.3390/w12041049
Agudelo-Vera C, Avvedimento S, Boxall J, Creaco E, de Kater H, Di Nardo A, Djukic A, Douterelo I, Fish KE, Iglesias Rey PL, et al. Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water. 2020; 12(4):1049. https://doi.org/10.3390/w12041049
Chicago/Turabian StyleAgudelo-Vera, Claudia, Stefania Avvedimento, Joby Boxall, Enrico Creaco, Henk de Kater, Armando Di Nardo, Aleksandar Djukic, Isabel Douterelo, Katherine E. Fish, Pedro L. Iglesias Rey, and et al. 2020. "Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities" Water 12, no. 4: 1049. https://doi.org/10.3390/w12041049
APA StyleAgudelo-Vera, C., Avvedimento, S., Boxall, J., Creaco, E., de Kater, H., Di Nardo, A., Djukic, A., Douterelo, I., Fish, K. E., Iglesias Rey, P. L., Jacimovic, N., Jacobs, H. E., Kapelan, Z., Martinez Solano, J., Montoya Pachongo, C., Piller, O., Quintiliani, C., Ručka, J., Tuhovčák, L., & Blokker, M. (2020). Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water, 12(4), 1049. https://doi.org/10.3390/w12041049