Optimizing the Management Strategies of a Multi-Purpose Multi-Reservoir System in Vietnam
Abstract
:1. Introduction
2. Study Area and Data Set
3. Methodology
3.1. Performance Indices
3.1.1. Shortage Rate (SR)
3.1.2. Shortage Index (SI)
3.1.3. Deficit Percent Day Index (DPD)
3.2. The Framework of the Simulation–Optimization Model
3.2.1. Simulation Model
3.2.2. The Optimization Algorithm
4. Results and Discussion
4.1. Annual Power Production
4.2. The Trade-off between Hydropower Generation and Water Supply
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nguyen, H.; Shaw, R. Drought Risk Management in Vietnam. Droughts in Asian Monsoon Region; Emerald Group Publishing Limited: Bingley, UK, 2011; Chapter 8; pp. 141–161. [Google Scholar]
- Vu-Thanh, H.; Ngo-Duc, T.; Phan-Van, T. Evolution of meteorological drought characteristics in Vietnam during the 1961–2007 period. Theor. Appl. Climatol. 2014, 118, 367–375. [Google Scholar] [CrossRef]
- Vu, M.T.; Raghavan, S.V.; Pham, D.M.; Liong, S.Y. Investigating drought over the Central Highland, Vietnam, using regional climate models. J. Hydrol. 2015, 526, 265–273. [Google Scholar] [CrossRef]
- Noi, L.V.; Nitivattananon, V. Assessment of vulnerabilities to climate change for urban water and wastewater infrastructure management: Case study in Dong Nai river basin, Vietnam. Environ. Dev. 2015, 16, 119–137. [Google Scholar] [CrossRef]
- Truong, N.; Nguyen, H.; Kondoh, A. Land Use and Land Cover Changes and Their Effect on the Flow Regime in the Upstream Dong Nai River Basin, Vietnam. Water 2018, 10, 1206. [Google Scholar] [CrossRef] [Green Version]
- Chandramouli, V.; Raman, H. Multi-reservoir modeling with dynamic programming and neural networks. J. Water Resour. Plan. Manag. 2001, 127, 89–98. [Google Scholar] [CrossRef]
- Labadie, J.W. Optimal operation of multi-reservoir systems: State-of-the-art review. J. Water Resour. Plan. Manag. 2004, 130, 93–111. [Google Scholar] [CrossRef]
- Reddy, M.J.; Kumar, D.N. Optimal reservoir operation using multi-objective evolutionary algorithm. Water Resour. Manag. 2006, 20, 861–878. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.N.; Reddy, M.J. Ant colony optimization for multi-purpose reservoir operation. Water Resour. Manag. 2006, 20, 879–898. [Google Scholar] [CrossRef]
- Nagesh Kumar, D.; Janga Reddy, M. Multipurpose reservoir operation using particle swarm optimization. J. Water Resour. Plan. Manag. 2007, 133, 192–201. [Google Scholar] [CrossRef]
- Rani, D.; Moreira, M.M. Simulation–optimization modeling: A survey and potential application in reservoir systems operation. Water Resour. Manag. 2010, 24, 1107–1138. [Google Scholar] [CrossRef] [Green Version]
- Khosrojerdi, T.; Moosavirad, S.H.; Ariafar, S.; Ghaeini-Hessaroeyeh, M. Optimal Allocation of Water Resources Using a Two-Stage Stochastic Programming Method with Interval and Fuzzy Parameters. Nat. Resour. Res. 2019, 28, 1107–1124. [Google Scholar] [CrossRef]
- Cancelliere, A.; Giuliano, G.; Ancarani, A.; Rossi, G. A neural networks approach for deriving irrigation reservoir operating rules. Water Resour. Manag. 2002, 16, 71–88. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Economou, A. Evaluation of the parameterization-simulation-optimization approach for the control of reservoir systems. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yoshitani, J.; Fukami, K. Stochastic multi-objective optimization of reservoirs in parallel. Hydrol. Process. Int. J. 2005, 19, 3551–3567. [Google Scholar] [CrossRef]
- Suiadee, W.; Tingsanchali, T. A combined simulation–genetic algorithm optimization model for optimal rule curves of a reservoir: A case study of the Nam Oon Irrigation Project, Thailand. Hydrol. Process. Int. J. 2007, 21, 3211–3225. [Google Scholar] [CrossRef]
- Shourian, M.; Mousavi, S.; Tahershamsi, A. Basin-wide water resources planning by integrating PSO algorithm and MODSIM. Water Resour. Manag. 2008, 22, 1347–1366. [Google Scholar] [CrossRef]
- Wurbs, R.A.; Karama, A.S. Salinity and water-supply reliability. J. Water Resour. Plan. Manag. 1995, 121, 352–358. [Google Scholar] [CrossRef]
- Dhar, A.; Datta, B. Optimal operation of reservoirs for downstream water quality control using linked simulation optimization. Hydrol. Process. Int. J. 2008, 22, 842–853. [Google Scholar] [CrossRef]
- Chen, L. Real coded genetic algorithm optimization of long term reservoir operation 1. J. Am. Water Resour. Assoc. 2003, 39, 1157–1165. [Google Scholar] [CrossRef]
- Oliveira, R.; Loucks, D.P. Operating rules for multi-reservoir systems. Water Resour. Res. 1997, 33, 839–852. [Google Scholar] [CrossRef]
- Hsu, S.-K. Shortage indices for water-resources planning in Taiwan. J. Water Resour. Plan. Manag. 1995, 121, 119–131. [Google Scholar] [CrossRef]
- Srdjevic, B.; Medeiros, Y.; Faria, A. An objective multi-criteria evaluation of water management scenarios. Water Resour. Manag. 2004, 18, 35–54. [Google Scholar] [CrossRef]
- Shiau, J.-T.; Lee, H. Derivation of optimal hedging rules for a water-supply reservoir through compromise programming. Water Resour. Manag. 2005, 19, 111–132. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, S.; Ding, Y.; He, X. Extraction and preference ordering of multi-reservoir water supply rules in dry years. Water 2016, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.T.; Chang, L.C.; Chang, F.J. Intelligent control for modeling of real-time reservoir operation, part II: Artificial neural network with operating rule curves. Hydrol. Process. Int. J. 2005, 19, 1431–1444. [Google Scholar] [CrossRef]
- Chang, F.-J.; Wang, Y.-C.; Tsai, W.-P. Modelling intelligent water resources allocation for multi-users. Water Resour. Manag. 2016, 30, 1395–1413. [Google Scholar] [CrossRef]
- Chang, F.J.; Lai, J.S.; Kao, L.S. Optimization of operation rule curves and flushing schedule in a reservoir. Hydrol. Process. 2003, 17, 1623–1640. [Google Scholar] [CrossRef]
- Yang, C.-C.; Chang, L.-C.; Yeh, C.-H.; Chen, C.-S. Multi-objective planning of surface water resources by multi-objective genetic algorithm with constrained differential dynamic programming. J. Water Resour. Plan. Manag. 2007, 133, 499–508. [Google Scholar] [CrossRef]
- Hsu, N.S.; Cheng, W.C.; Cheng, W.M.; Wei, C.C.; Yeh, W.W. Optimization and capacity expansion of a water distribution system. Adv. Water Resour. 2008, 31, 776–786. [Google Scholar] [CrossRef]
- Chang, L.-C.; Chang, F.-J. Multi-objective evolutionary algorithm for operating parallel reservoir system. J. Hydrol. 2009, 377, 12–20. [Google Scholar] [CrossRef]
- Yang, C.-C.; Chang, L.-C.; Chen, C.-S.; Yeh, M.-S. Multi-objective planning for conjunctive use of surface and subsurface water using genetic algorithm and dynamics programming. Water Resour. Manag. 2009, 23, 417–437. [Google Scholar] [CrossRef]
- Hashimoto, T.; Loucks, D.P.; Stedinger, J.R. Reliability, resiliency, robustness, and vulnerability criteria for water resource systems. Water Resour. Res. 1982, 18. [Google Scholar]
- Moy, W.S.; Cohon, J.L.; ReVelle, C.S. A programming model for analysis of the reliability, resilience, and vulnerability of a water supply reservoir. Water Resour. Res. 1986, 22, 489–498. [Google Scholar] [CrossRef]
- Zongxue, X.; Jinno, K.; Kawamura, A.; Takesaki, S.; Ito, K. Performance risk analysis for Fukuoka water supply system. Water Resour. Manag. 1998, 12, 13–30. [Google Scholar] [CrossRef]
- Maier, H.R.; Lence, B.J.; Tolson, B.A.; Foschi, R.O. First-order reliability method for estimating reliability, vulnerability, and resilience. Water Resour. Res. 2001, 37, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.; Kilsby, C.; O’Connell, P. Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen, T.R.; Rosbjerg, D. Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems/Choix d’estimateurs de fiabilité, de résilience et de vulnérabilité pour les analyses de risque de systèmes de ressources en eau. Hydrol. Sci. J. 2004, 49. [Google Scholar] [CrossRef]
- Jain, S.; Bhunya, P. Reliability, resilience and vulnerability of a multipurpose storage reservoir/Confiance, résilience et vulnérabilité d’un barrage multi-objectifs. Hydrol. Sci. J. 2008, 53, 434–447. [Google Scholar] [CrossRef]
- Asefa, T.; Clayton, J.; Adams, A.; Anderson, D. Performance evaluation of a water resources system under varying climatic conditions: Reliability, Resilience, Vulnerability and beyond. J. Hydrol. 2014, 508, 53–65. [Google Scholar] [CrossRef]
- Chou, F.N.F.; Wu, C.W.; Lin, C.H. Simulating multi-reservoir operation rules by network flow model. Operating Reservoirs in Changing Conditions. In Proceedings of the Operations Management Conference, Sacramento, CA, USA, 14–16 August 2006; pp. 335–344. [Google Scholar]
- Chou, F.N.-F.; Wu, C. Reducing the impacts of flood-induced reservoir turbidity on a regional water supply system. Adv. Water Resour. 2010, 33, 146–157. [Google Scholar] [CrossRef]
- Yerram reddy, A.R.; Wurbs, R.A. Water resources allocation based on network flow programming. Civ. Eng. Syst. 1996, 13, 75–87. [Google Scholar] [CrossRef]
- Labadie, J.W.; Bode, D.A.; Pineda, A.M. Network model for decision support in municipal raw water supply 1. J. Am. Water Resour. Assoc. 1986, 22, 927–940. [Google Scholar] [CrossRef]
- Barr, R.S.; Glover, F.; Klingman, D. An improved version of the out-of-kilter method and a comparative study of computer codes. Math. Program. 1974, 7, 60–86. [Google Scholar] [CrossRef]
- Fulkerson, D.R. An out-of-kilter method for minimal-cost flow problems. J. Soc. Ind. Appl. Math. 1961, 9, 18–27. [Google Scholar] [CrossRef]
- Powell, M.J. The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives; Cambridge NA Report NA2009/06; University of Cambridge: Cambridge, UK, 2009; pp. 26–46. [Google Scholar]
- Martinez-Cantin, R. Bayesopt: A bayesian optimization library for nonlinear optimization, experimental design and bandits. J. Mach. Learn. Res. 2014, 15, 3735–3739. [Google Scholar]
- Jin, C.; Zhao, W.; Normani, S.D.; Zhao, P.; Emelko, M.B. Synergies of media surface roughness and ionic strength on particle deposition during filtration. Water Res. 2017, 114, 286–295. [Google Scholar] [CrossRef]
- Appel, S.; Reimann, S. Beam Line Optimization Using Derivative-Free Algorithms. In Proceedings of the 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19–24 May 2019. [Google Scholar]
- Foks, S.S.; Raffensperger, J.P.; Penn, C.A.; Driscoll, J.M. Estimation of Base Flow by Optimal Hydrograph Separation for the Conterminous United States and Implications for National-Extent Hydrologic Models. Water 2019, 11, 1629. [Google Scholar] [CrossRef] [Green Version]
- Lüthi, M. Stream Gauge Calibration of a Cave Stream Using Water Temperature Variability as a Tracer. Water Resour. Res. 2019, 55, 5738–5750. [Google Scholar] [CrossRef]
- Chen, M.; Izady, A.; Abdalla, O.A. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model. J. Hydrol. 2017, 544, 591–603. [Google Scholar] [CrossRef]
- Chou, F.N.-F.; Wu, C.-W. Stage-wise optimizing operating rules for flood control in a multi-purpose reservoir. J. Hydrol. 2015, 521, 245–260. [Google Scholar] [CrossRef]
- Chou, F.N.; Nguyen, L.T. Comparing the Generating Strategies of Hydropower of Cascade Reservoirs to Mitigate the Shortage of Water Supply. In Proceedings of the 12th International Conference on Hydroscience & Engineering, Tainan, Taiwan, 6–10 November 2016. [Google Scholar]
- Huang, W.C.; Yuan, L.C.; Lee, C.M. Linking genetic algorithms with stochastic dynamic programming to the long-term operation of a multi-reservoir system. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
Name of Reservoir | Water Level (El.m) | Corresponded Storage (106 m3) | ||||
---|---|---|---|---|---|---|
Flood Control | Active | Dead | Flood Control | Active | Dead | |
Thac Mo | 220.8 | 218.0 | 198.0 | 1668.1 | 1360.0 | 110.0 |
Can Don | 112.3 | 110.0 | 104.0 | 229.3 | 165.5 | 85.6 |
SPM | 73.6 | 72.0 | 70.0 | 34.6 | 28.4 | 20.6 |
Phuoc Hoa | 45.3 | 42.9 | 42.5 | 31.1 | 13.7 | 11.2 |
Demand Site | Reservoir Storage | Accumulated Demand Proportion | Hydropower | ||||||
---|---|---|---|---|---|---|---|---|---|
St1 | P5. | D&I2 | P6. | AG3 | P6. | P6.(E4.) | Hour | P6.(HP5) | |
Upstream | 100% | 240 | 100% | 260 | |||||
90% | 170 | 90% | 190 | ||||||
80% | 70 | 70% | 120 | ||||||
60% | 60 | 60% | 110 | ||||||
40% | 50 | 40% | 100 | ||||||
20% | 40 | 20% | 90 | ||||||
Thac Mo | FC | 300 | 100% | 240 | 100% | 260 | 280 | ||
UP | 270 | THH9 | 250 | ||||||
UL | 200 | 90% | 170 | 90% | 190 | TDH8 | 180 | ||
LL | 130 | 80% | 70 | 70% | 120 | ||||
60% | 60 | 60% | 110 | ||||||
40% | 50 | 40% | 100 | ||||||
20% | 40 | 20% | 90 | ||||||
LP | 30 | TLH7 | 20 | ||||||
Dead | 10 | ||||||||
Can Don | FC | 310 | 100% | 240 | 100% | 260 | |||
UL | 210 | 90% | 170 | 90% | 190 | TDH8 | 180 | ||
LL | 140 | 80% | 70 | 70% | 120 | ||||
60% | 60 | 60% | 110 | ||||||
40% | 50 | 40% | 100 | ||||||
20% | 40 | 20% | 90 | 280 | |||||
Dead | 10 | ||||||||
SRPM | FC | 320 | 100% | 240 | 100% | 260 | |||
UL | 220 | 90% | 170 | 90% | 190 | TDH8 | 180 | ||
LL | 150 | 80% | 70 | 70% | 120 | ||||
60% | 60 | 60% | 110 | ||||||
40% | 50 | 40% | 100 | ||||||
20% | 40 | 20% | 90 | 280 | |||||
Dead | 10 | ||||||||
Phuoc Hoa | FC | 330 | 100% | 260 | |||||
UL | 230 | 90% | 190 | ||||||
LL | 160 | 70% | 120 | ||||||
60% | 110 | ||||||||
40% | 100 | ||||||||
20% | 90 | 280 | |||||||
Dead | 10 | ||||||||
Downstream | 100% | 240 | 100% | 260 | |||||
90% | 170 | 90% | 190 | ||||||
80% | 70 | 70% | 120 | ||||||
60% | 60 | 60% | 110 | ||||||
40% | 50 | 40% | 100 | ||||||
20% | 40 | 20% | 90 | 280 | |||||
Water diversion | 290 |
Sc1. | Reservoir | Month | Ave2. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
1 | Thac Mo | 5.9 | 15.3 | 7.9 | 6.0 | 7.0 | 6.0 | 6.5 | 6.6 | 4.3 | 4.5 | 7.2 | 6.9 | 7.0 |
Can Don | 3.0 | 2.1 | 2.8 | 3.3 | 4.9 | 3.6 | 3.4 | 4.6 | 3.9 | 3.9 | 4.1 | 2.5 | 3.5 | |
SRPM | 3.0 | 2.1 | 2.1 | 2.5 | 3.0 | 3.1 | 4.1 | 4.0 | 4.7 | 3.6 | 3.4 | 2.5 | 3.2 | |
2 | Thac Mo | 10.1 | 10.1 | 10.3 | 6.6 | 12.1 | 12.0 | 12.0 | 12.5 | 6.8 | 12.3 | 12.0 | 10.1 | 10.6 |
Can Don | 3.4 | 4.6 | 3.0 | 3.3 | 3.6 | 3.6 | 4.6 | 4.0 | 4.0 | 3.9 | 3.9 | 4.5 | 3.9 | |
SRPM | 3.3 | 2.0 | 4.2 | 2.0 | 3.3 | 4.1 | 3.7 | 4.4 | 3.6 | 3.9 | 3.4 | 3.9 | 3.5 | |
3 | Thac Mo | 11.4 | 11.3 | 24.0 | 6.5 | 12.0 | 14.7 | 13.1 | 14.2 | 13.1 | 13.8 | 12.2 | 11.0 | 13.1 |
Can Don | 3.5 | 5.2 | 2.5 | 4.2 | 4.4 | 4.0 | 4.7 | 4.6 | 4.1 | 2.7 | 4.6 | 4.1 | 4.0 | |
SRPM | 3.2 | 3.4 | 2.2 | 2.0 | 2.1 | 5.6 | 3.7 | 4.5 | 4.4 | 3.2 | 4.0 | 2.2 | 3.4 | |
4 | Thac Mo | 17.1 | 17.0 | 16.9 | 5.5 | 19.0 | 19.0 | 19.0 | 18.8 | 18.3 | 19.0 | 19.1 | 17.0 | 17.1 |
Can Don | 3.3 | 4.5 | 3.0 | 3.3 | 4.2 | 3.7 | 4.6 | 4.0 | 4.0 | 3.9 | 4.0 | 4.4 | 3.9 | |
SRPM | 3.3 | 3.8 | 2.1 | 2.0 | 3.0 | 4.0 | 3.8 | 4.4 | 3.6 | 3.8 | 3.5 | 4.0 | 3.4 | |
5 | Thac Mo | 21.9 | 22.2 | 19.1 | 16.8 | 21.7 | 23.8 | 23.9 | 18.9 | 18.0 | 21.4 | 19.8 | 19.0 | 20.5 |
Can Don | 3.9 | 4.3 | 3.9 | 3.5 | 2.1 | 3.5 | 4.0 | 3.9 | 4.0 | 4.0 | 4.0 | 4.0 | 3.8 | |
SRPM | 3.2 | 4.0 | 4.4 | 2.0 | 2.1 | 3.8 | 3.9 | 4.1 | 3.8 | 4.0 | 3.9 | 4.1 | 3.6 | |
6 | Thac Mo | 21.2 | 22.7 | 18.2 | 4.8 | 20.7 | 23.0 | 23.0 | 18.0 | 17.5 | 20.4 | 18.8 | 18.1 | 18.9 |
Can Don | 3.5 | 4.9 | 3.2 | 3.6 | 4.0 | 3.8 | 4.8 | 4.2 | 4.2 | 4.2 | 4.2 | 4.7 | 4.1 | |
SRPM | 3.6 | 4.0 | 3.1 | 2.3 | 3.4 | 4.3 | 4.1 | 4.6 | 3.9 | 4.1 | 3.8 | 4.3 | 3.8 | |
7 | Thac Mo | 23.1 | 24.0 | 24.0 | 5.3 | 19.6 | 23.1 | 23.0 | 18.0 | 17.4 | 20.4 | 22.9 | 23.0 | 20.3 |
Can Don | 3.3 | 4.6 | 3.0 | 3.3 | 3.6 | 3.4 | 5.0 | 5.0 | 4.0 | 4.0 | 4.9 | 5.0 | 4.1 | |
SRPM | 3.3 | 3.8 | 3.0 | 3.5 | 3.1 | 4.1 | 3.7 | 4.4 | 3.6 | 3.8 | 3.5 | 3.9 | 3.7 |
Scenario | DPD Constraint | Simulated Result | Optimized Results | Energy | ||
---|---|---|---|---|---|---|
Energy 106 kWh | DPD | Energy 106 kWh | DPD | Improvement % | ||
1 | 600 | 1266 | 617 | 3.51% | ||
2 | 750 | 1275 | 804 | 4.25% | ||
3 | 900 | 1284 | 911 | 5.00% | ||
4 | 1050 | 1223 | 3873 | 1292 | 1058 | 5.64% |
5 | 1200 | 1292 | 1294 | 5.67% | ||
6 | 1350 | 1293 | 1382 | 5.72% | ||
7 | 1500 | 1293 | 1575 | 5.74% |
Scenario No. | DPD | Shortage Index (SI) | Shortage Rate (SR) | ||
---|---|---|---|---|---|
D&I | AG | Max. Annual Shortage Rate | Average Shortage Rate | ||
1 | 617 | 0.003 | 0.162 | 10% | 0% |
2 | 804 | 0.007 | 0.308 | 10% | 5% |
3 | 911 | 0.011 | 0.369 | 13% | 6% |
4 | 1058 | 0.019 | 0.701 | 13% | 6% |
5 | 1294 | 0.043 | 0.956 | 13% | 10% |
6 | 1382 | 0.038 | 0.957 | 13% | 10% |
7 | 1575 | 0.067 | 1.031 | 14% | 10% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, F.N.-F.; Linh, N.T.T.; Wu, C.-W. Optimizing the Management Strategies of a Multi-Purpose Multi-Reservoir System in Vietnam. Water 2020, 12, 938. https://doi.org/10.3390/w12040938
Chou FN-F, Linh NTT, Wu C-W. Optimizing the Management Strategies of a Multi-Purpose Multi-Reservoir System in Vietnam. Water. 2020; 12(4):938. https://doi.org/10.3390/w12040938
Chicago/Turabian StyleChou, Frederick N.-F., Nguyen Thi Thuy Linh, and Chia-Wen Wu. 2020. "Optimizing the Management Strategies of a Multi-Purpose Multi-Reservoir System in Vietnam" Water 12, no. 4: 938. https://doi.org/10.3390/w12040938
APA StyleChou, F. N. -F., Linh, N. T. T., & Wu, C. -W. (2020). Optimizing the Management Strategies of a Multi-Purpose Multi-Reservoir System in Vietnam. Water, 12(4), 938. https://doi.org/10.3390/w12040938