Defining the Nature of the Nexus: Specialization, Connectedness, Scarcity, and Scale in Food–Energy–Water Management
Abstract
:1. Introduction
2. The FEW Crisis in Yemen
3. Development of the FEW Nexus
4. Defining Characteristics of a FEW Nexus
4.1. Specialized Sectors
4.2. Cross-Boundary FEW Transactions
4.3. Potential for Transactions that Propagate Scarcity throughout the System
4.4. Crisis within a FEW Nexus vs. a FEW Nexus in Crisis
5. How Do these Criteria Perform?
6. Deploying this FEW Nexus Definition
6.1. Characterizing FEW Capital
6.2. The FEWshed—Managing Issues of Scale in Space and Time
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- (1)
- That a given case is or is not a FEW nexus must be a well-reasoned consequence (given available, relevant evidence) of the conditions in the definition of the concept;
- (2)
- Each of the conditions in the definition of the concept must be true if the specific case is a FEW nexus;
- (3)
- The conditions in the definition must be generally true and not special cases of the given case; and
- (4)
- The conditions in the definition must be observable, testable, and relevant to the intended research.
Appendix B
References
- United Nations Department of Economic and Social Affairs, Population Div. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. 2015. Available online: https://www.un.org/en/development/desa/publications/world-population-prospects-2015-revision.html (accessed on 26 March 2020).
- Andrews-Speed, P.; Bleischwitz, R.; Boersma, T.; Johnson, C.; Kemp, G.; VanDeveer, S.D.; Bleischwitz, R.; Boersma, T.; Johnson, C.; Kemp, G.; et al. Want, Waste or War? The Global Resource Nexus and the Struggle for Land, Energy, Food, Water and Minerals; Routledge: Abingdon-on-Thames, UK, 2014; ISBN 978-1-315-76824-3. [Google Scholar]
- Hoff, H. Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Krchnak, K.M.; Smith, D.M.; Deutz, A. Putting Nature in the Nexus: Investing in Natural Infrastructure to Advance Water-Energy-Food Security; IUCN: Gland, Switzerland, 2011. [Google Scholar]
- United Nations; FAO. The Water-Energy-Food Nexus. A New Approach in Support of Food Security and Sustainable Agriculture; FAO: Rome, Italy, 2014. [Google Scholar]
- BMU, G.F.M. Nature conservation and nuclear safety. In Messages from Bonn 2011: Water, Energy and Food Security Nexus-Solutions for a Green Economy; German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the German Federal Ministry for Economic Cooperation and Development (BMZ): Bonn, Germany, 2011; p. 4. [Google Scholar]
- NSF. NSF Invests $72 Million in Innovations at Nexus of Food, Energy and Water Systems. Available online: https://www.nsf.gov/news/news_summ.jsp?cntn_id=189898 (accessed on 9 February 2020).
- Belmont Forum; Joint Programming Initiative Urban Europe Sustainable Urbanisation Global Initiative (SUGI)/Food-Water-Energy Nexus. Available online: https://jpi-urbaneurope.eu/calls/sugi/ (accessed on 9 February 2020).
- Adnan, H. The Status of the Water-Food-Energy Nexus in Asia and the Pacific; United Nations ESCAP: Bangkok, Thailand, 2013. [Google Scholar]
- Benson, D.; Gain, A.K.; Rouillard, J.J. Water governance in a comparative perspective: From IWRM to a “nexus” approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Al-Saidi, M.; Elagib, N.A. Towards understanding the integrative approach of the water, energy and food nexus. Sci. Total Environ. 2017, 574, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Future Earth. Future Earth 2025 Vision; Future Earth Secretariat: Paris, France, 2014. [Google Scholar]
- Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environ. Sci. Policy 2017. [Google Scholar] [CrossRef]
- Smajgl, A.; Ward, J.; Pluschke, L. The water–food–energy nexus–Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Allouche, J.; Middleton, C.; Gyawall, D. Technical veil, hidden politics: Interrogating the power linkages behind the nexus. Water Altern. 2015, 8, 610–626. [Google Scholar]
- Cairns, R.; Krzywoszynska, A. Anatomy of a buzzword: The emergence of ‘the water-energy-food nexus’ in UK natural resource debates. Environ. Sci. Policy 2016, 64, 164–170. [Google Scholar] [CrossRef]
- Goldsby, M. The “Structure” of the “Strategy”: Looking at the Matthewson-Weisberg trade-off and its justificatory role for the multiple-models approach. Philos. Sci. 2013, 80, 862–873. [Google Scholar] [CrossRef]
- Vivanco, D.; Wang, R.; Deetman, S.; Hertwich, E. Unraveling the nexus: Exploring the pathways to combined resource use. J. Ind. Ecol. 2019, 23, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Stephens, D.W.; Krebs, J.R. Foraging Theory; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.; Izaurralde, R.C.; Lambin, E.; Li, S. Framing sustainability in a telecoupled world. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taherzadeh, O.; Bithell, M.; Richards, K. When defining boundaries for nexus analysis, let the data speak. Resour. Conserv. Recycl. 2018, 137, 314–315. [Google Scholar] [CrossRef]
- D’Odorico, P.; Frankel Davis, K.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suwels, S.; et al. The global food-energy-water nexus. Rev. Geophys. 2018, 56. [Google Scholar] [CrossRef]
- Lichtenthäler, G. Water conflict and cooperation in Yemen. Middle East Rep. 2010, 40, 254. [Google Scholar]
- Um, N. Spatial negotiations in a commercial city: The Red Sea port of Mocha, Yemen, during the first half of the eighteenth century. J. Soc. Archit. Hist. 2003, 62, 178–193. [Google Scholar] [CrossRef]
- Um, N. The Merchant Houses of Mocha: Trade and Architecture in an Indian Ocean Port; University of Washington Press: Seattle, WA, USA, 2011. [Google Scholar]
- Hill, G. Yemen Endures: Civil War, Saudi Adventurism and the Future of Arabia; Oxford University Press: Oxford, UK, 2017; ISBN 978-0-19-084236-9. [Google Scholar]
- Mounassar, H. Qat Cultivation Drains Yemen’s Precious Groundwater. Available online: https://phys.org/news/2014-05-qat-cultivation-yemen-precious-groundwater.html (accessed on 12 September 2017).
- Al-Hamdi, M.I. Competition for Scarce Groundwater in the Sana’a Plain, Yemen. A Study of the Incentive Systems for Urban and Agricultural Water Use; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- The World Bank. Population, Total—Yemen, Rep. Data. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=YE (accessed on 10 February 2020).
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [Green Version]
- Helander, H. Geographic Disparities in Future Global Food Security: Exploring the Impacts of Population Development and Climate Change. 2017. Available online: https://uu.diva-portal.org/smash/get/diva2:1068700/FULLTEXT01.pdf (accessed on 26 March 2020).
- Pal, J.S.; Eltahir, E.A. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Chang. 2016, 6, 197. [Google Scholar] [CrossRef]
- Ward, C. The political economy of irrigation water pricing in Yemen. In The Political Economy of Water Pricing Reforms; Dinar, A., Ed.; World Bank Publications: New York, NY, USA, 2000; pp. 381–394. [Google Scholar]
- Ward, C. Water conflict in Yemen: The case for strengthening local resolution mechanisms. In Water in the Arab World; Jagannathan, N.V., Mohamed, A.S., Kremer, A., Eds.; World Bank Publications: New York, NY, USA, 2009; p. 233. [Google Scholar]
- Esfandiary, D.; Tabatabai, A. Yemen: An opportunity for Iran–Saudi dialogue? Wash. Q. 2016, 39, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Laub, Z. Yemen in crisis. In Council on Foreign Relations; 2016; Available online: https://www.cfr.org/backgrounder/yemen-crisis (accessed on 26 March 2020).
- Vatikiotis, P.J. Conflict in the Middle East; Routledge: Abingdon-on-Thames, UK, 2016. [Google Scholar]
- Costanza, R.; Kubiszewski, I. A nexus approach to urban and regional planning using the four-capital framework of ecological economics. In Environmental Resource Management and the Nexus Approach; Springer: Berlin/Heidelberg, Germany, 2016; pp. 79–111. [Google Scholar]
- Scanlon, B.R.; Ruddell, B.L.; Reed, P.M.; Hook, R.I.; Zheng, C.; Tidwell, V.C.; Siebert, S. The food-energy-water nexus: Transforming science for society. Water Resour. Res. 2017, 53, 3550–3556. [Google Scholar] [CrossRef]
- Slater, M.H. Natural kindness. Br. J. Philos. Sci. 2014, 66, 375–411. [Google Scholar] [CrossRef]
- Rickman, G.E. The grain trade under the Roman Empire. Mem. Am. Acad. Rome 1980, 36, 261–275. [Google Scholar] [CrossRef]
- Temin, P. Price behavior in ancient Babylon. Explor. Econ. Hist. 2002, 39, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Mays, L.W.; Koutsoyiannis, D.; Angelakis, A.N. A brief history of urban water supply in antiquity. Water Sci. Technol. Water Supply 2007, 7, 1–12. [Google Scholar] [CrossRef]
- Cushman, G.T. Guano and the Opening of the Pacific World: A Global Ecological History; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-1139047470. [Google Scholar]
- Roberts, P. The End of Food; Mariner Books: London, UK, 2009; ISBN 978-0-547-08597-5. [Google Scholar]
- Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Lettenmaier, D.P. Effects of climate change on hydrology and water resources in the Columbia River basin. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 1597–1623. [Google Scholar] [CrossRef]
- Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. Mitigating the effects of climate change on the water resources of the Columbia River basin. Clim. Chang. 2004, 62, 233–256. [Google Scholar] [CrossRef]
- Yoder, J.; Adam, J.; Brady, M.; Cook, J.; Katz, S.; Johnston, S.; Malek, K.; McMillan, J.; Yang, Q. Benefit-cost analysis of integrated water resource management: Accounting for Interdependence in the yakima basin integrated plan. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 456–477. [Google Scholar] [CrossRef]
- Smith, A. Wealth of Nations. Pennsylvania State University. 2005. Available online: http://faculty.fgcu.edu/twimberley/EnviroPhilo/WealthNations.pdf (accessed on 26 March 2020).
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
- Wandschneider, P.R. Managing river systems: Centralization versus decentralization. Nat. Resour. J. 1984, 24, 1043–1066. [Google Scholar]
- Zeng, R.; Cai, X.; Ringler, C.; Zhu, T. Hydropower versus irrigation—An analysis of global patterns. Environ. Res. Lett. 2017, 12, 034006. [Google Scholar] [CrossRef]
- Howell, T.A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Hornbeck, R.; Keskin, P. The historically evolving impact of the Ogallala aquifer: Agricultural adaptation to groundwater and drought. Am. Econ. J. Appl. Econ. 2014, 6, 190–219. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmi, O.V.; Wilhite, D.A. Assessing vulnerability to agricultural drought: A Nebraska case study. Nat. Hazards 2002, 25, 37–58. [Google Scholar] [CrossRef]
- Su, Y.; Kern, J.D.; Characklis, G.W. The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems. Appl. Energy 2017, 194, 172–183. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Daher, B. Water, energy, and food: The ultimate nexus. In Encyclopedia of Agricultural, Food, and Biological Engineering; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2012. [Google Scholar]
- World Economic Forum. Global Risks 2011 Sixth Edition An Initiative of the Global Response Network; World Economic Forum: Geneva, Switzerland, 2011; p. 56. [Google Scholar]
- Rasul, G. Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region. Environ. Sci. Policy 2014, 39, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Christian-Smith, J.; Gliek, P.H.; Cooley, H.; Allen, L.; Vanderwarker, A.; Berry, K.A. A Twenty-First Century US Water Policy; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Jaeger, W.K.; Plantinga, A.J.; Chang, H.; Dello, K.; Grant, G.; Hulse, D.; McDonnell, J.J.; Lancaster, S.; Moradkhani, H.; Morzillo, A.T.; et al. Toward a formal definition of water scarcity in natural-human systems. Water Resour. Res. 2013, 49, 4506–4517. [Google Scholar] [CrossRef]
- Aguilera-Klink, F.; Pérez-Moriana, E.; Sánchez-Garcıa, J. The social construction of scarcity. The case of water in Tenerife (Canary Islands). Ecol. Econ. 2000, 34, 233–245. [Google Scholar] [CrossRef]
- Reisner, M. Cadillac Desert: The American West and Its Disappearing Water; Penguin: London, UK, 1993; ISBN 978-0-14-017824-1. [Google Scholar]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51. [Google Scholar] [CrossRef]
- Porkka, M.; Guillaume, J.H.; Siebert, S.; Schaphoff, S.; Kummu, M. The use of food imports to overcome local limits to growth. Earths Future 2017, 5, 393–407. [Google Scholar] [CrossRef]
- Suweis, S.; Rinaldo, A.; Maritan, A.; D’Odorico, P. Water-controlled wealth of nations. Proc. Natl. Acad. Sci. USA 2013, 110, 4230–4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouche, J. The sustainability and resilience of global water and food systems: Political analysis of the interplay between security, resource scarcity, political systems and global trade. Food Policy 2011, 36, S3–S8. [Google Scholar] [CrossRef]
- Wolf, A.T. Conflict and cooperation along international waterways. Water Policy 1998, 1, 251–265. [Google Scholar] [CrossRef]
- Marchand, P.; Carr, J.A.; Dell’Angelo, J.; Fader, M.; Gephart, J.A.; Kummu, M.; Magliocca, N.R.; Porkka, M.; Puma, M.J.; Ratajczak, Z. Reserves and trade jointly determine exposure to food supply shocks. Environ. Res. Lett. 2016, 11, 95009. [Google Scholar] [CrossRef] [Green Version]
- Mielke, E.; Anadon, L.D.; Narayanamurti, V. Water consumption of energy resource extraction, processing, and conversion. Belfer Center for Science and International Affairs; Harvard Kennedy School: Cambridge, MA, USA, 2010. [Google Scholar]
- Funabashi, Y.; Kitazawa, K. Fukushima in review: A complex disaster, a disastrous response. Bull. At. Sci. 2012, 68, 9–21. [Google Scholar] [CrossRef]
- Rhodes, C.J. The Fukushima Daiichi nuclear accident. Sci. Prog. 2014, 97, 72–86. [Google Scholar] [CrossRef]
- Norio, O.; Ye, T.; Kajitani, Y.; Shi, P.; Tatano, H. The 2011 eastern Japan great earthquake disaster: Overview and comments. Int. J. Disaster Risk Sci. 2011, 2, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Chino, M.; Nakayama, H.; Nagai, H.; Terada, H.; Katata, G.; Yamazawa, H. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J. Nucl. Sci. Technol. 2011, 48, 1129–1134. [Google Scholar] [CrossRef]
- Nuclear Safety Commission of Japan. Trial Estimation of Emission of Radioactive Materials (I-131, Cs-137) into the Atmosphere from Fukushima Dai-ichi Nuclear Power Station. 2011. Available online: http://www.nsc.go.jp/NSCenglish/geje/2011%200412%20press.pdf (accessed on 12 July 2018).
- Binford, L.R. Willow smoke and dogs’ tails: Hunter-gatherer settlement systems and archaeological site formation. Am. Antiq. 1980, 45, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Testart, A.; Forbis, R.G.; Hayden, B.; Ingold, T.; Perlman, S.M.; Pokotylo, D.L.; Rowley-Conwy, P.; Stuart, D.E. The significance of food storage among hunter-gatherers: Residence patterns, population densities, and social inequalities and comments and reply. Curr. Anthropol. 1982, 23, 523–537. [Google Scholar] [CrossRef]
- Blurton Jones, N.G. Tolerated theft, suggestions about the ecology and evolution of sharing, hoarding and scrounging. Soc. Sci. Inf. 1987, 26, 31–54. [Google Scholar] [CrossRef]
- Fare, R.; Färe, R.; Fèare, R.; Grosskopf, S.; Lovell, C.K. Production Frontiers; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Allan, J.A. “Virtual Water”: A Long Term Solution for Water Short Middle Eastern Economies; School of Oriental and African Studies, University of London: London, UK, 1997. [Google Scholar]
- Allan, J.A. Virtual water-the water, food, and trade nexus. Useful concept or misleading metaphor? Water Int. 2003, 28, 106–113. [Google Scholar] [CrossRef]
- Zimmer, D.; Renault, D. Virtual water in food production and global trade: Review of methodological issues and preliminary results. In Proceedings of the International Expert Meeting on Virtual Water Trade, Value of Water Research Report Series; IHE Delft: Delft, The Netherlands, 2003; Volume 12, pp. 93–109. Available online: https://waterfootprint.org/media/downloads/Report12.pdf (accessed on 26 March 2020).
- Brady, M.; Li, T.; Yoder, J. The Columbia River treaty renegotiation from the perspective of contract theory. J. Contemp. Water Res. Educ. 2015, 155, 53–62. [Google Scholar] [CrossRef]
- Quine, W.V. On the reasons for indeterminacy of translation. J. Philos. 1970, 67, 178–183. [Google Scholar] [CrossRef]
- Raghubir, P.; Srivastava, J. The denomination effect. J. Consum. Res. 2009, 36, 701–713. [Google Scholar] [CrossRef]
- Weitz, N.; Nilsson, M.; Davis, M. A nexus approach to the post-2015 agenda: Formulating integrated water, energy, and food SDGs. SAIS Rev. Int. Aff. 2014, 34, 37–50. [Google Scholar] [CrossRef]
- Biermann, F.; Kanie, N.; Kim, R.E. Global governance by goal-setting: The novel approach of the UN sustainable development goals. Curr. Opin. Environ. Sustain. 2017, 26, 26–31. [Google Scholar] [CrossRef]
- Le Blanc, D. Towards integration at last? The sustainable development goals as a network of targets. Sustain. Dev. 2015, 23, 176–187. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Globalisation of water resources: International virtual water flows in relation to crop trade. Glob. Environ. Chang. 2005, 15, 45–56. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.D.; Singh, O.P. Virtual water in global food and water policy making: Is there a need for rethinking? Water Resour. Manag. 2005, 19, 759–789. [Google Scholar] [CrossRef]
- Hawkes, C. Uneven dietary development: Linking the policies and processes of globalization with the nutrition transition, obesity and diet-related chronic diseases. Glob. Health 2006, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rayner, G.; Hawkes, C.; Lang, T.; Bello, W. Trade liberalization and the diet transition: A public health response. Health Promot. Int. 2006, 21, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Reedy, R.C.; Faunt, C.C.; Pool, D.; Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 2016, 11, 035013. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Kumari, K.; Ramanathan, A.L.; Saxena, R. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ. Geol. 2007, 53, 553–574. [Google Scholar] [CrossRef]
- Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 2012, 59, 143–156. [Google Scholar] [CrossRef]
- Muller, M. The ‘Nexus’ as a step back towards a more coherent water resource management paradigm. Water Altern. 2015, 8, 675–694. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [Green Version]
- Vanham, D. Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus? Ecosyst. Serv. 2016, 17, 298–307. [Google Scholar] [CrossRef]
- Tamea, S.; Laio, F.; Ridolfi, L. Global effects of local food-production crises: A virtual water perspective. Sci. Rep. (Nat. Publ. Group) 2016, 6, 18803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Zimmerman, J. Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environ. Sci. Technol. 2016, 50, 5143–5153. [Google Scholar] [CrossRef]
- Feagan, R. The place of food: Mapping out the ‘local’ in local food systems. Prog. Hum. Geogr. 2007, 31, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Cope, S.; Leishman, F.; Starie, P. Globalization, new public management and the enabling state: Futures of police management. Int. J. Public Sect. Manag. 1997, 10, 444–460. [Google Scholar] [CrossRef]
- Astiz, M.F.; Wiseman, A.W.; Baker, D.P. Slouching towards decentralization: Consequences of globalization for curricular control in national education systems. Comp. Educ. Rev. 2002, 46, 66–88. [Google Scholar] [CrossRef]
- Baker, A.; Hudson, D.; Woodward, R. Governing Financial Globalization: International Political Economy and Multi-Level Governance; Routledge: Abingdon-on-Thames, UK, 2005. [Google Scholar]
- Wei, Y.D. Decentralization, marketization, and globalization: The triple processes underlying regional development in China. Asian Geogr. 2001, 20, 7–23. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manag. 2006, 21, 49–62. [Google Scholar] [CrossRef]
- Walters, C.J. Adaptive Management of Renewable Resources; Macmillan Publishing Co.: New York, NY, USA, 1986. [Google Scholar]
- Armitage, D.R.; Plummer, R.; Berkes, F.; Arthur, R.I.; Charles, A.T.; Davidson-Hunt, I.J.; Diduck, A.P.; Doubleday, N.C.; Johnson, D.S.; Marschke, M. Adaptive co-management for social–ecological complexity. Front. Ecol. Environ. 2009, 7, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Wittgenstein, L. The Blue and Brown Books; HarperCollins: New York, NY, USA, 1965; ISBN 978-0-06-131211-3. [Google Scholar]
- Cleland, C.E. Life without definitions. Synthese 2012, 185, 125–144. [Google Scholar] [CrossRef]
- Cleland, C.E. The Quest for a Universal Theory of Life: Searching for Life as We Don’t Know It; Cambridge University Press: Cambridge, UK, 2019; Volume 11. [Google Scholar]
- Warren, M.A. On the moral and legal status of abortion. Monist 1973, 57, 43–61. [Google Scholar] [CrossRef]
- Hempel, C.G. Aspects of Scientific Explanation and Other Essays in the Philosophy of Science; The Free Press: New York, NY, USA; Collier-Macmillan, Ltd.: London, UK, 1965. [Google Scholar]
- Woodburn, J. Hunters and Gatherers Today and Reconstruction of the Past. In Soviet and Western Anthropology; Columbia University Press: New York, NY, USA, 1980; pp. 95–117. [Google Scholar]
- Rowley-Conwy, P.; Zvelebil, M. Saving it for later: Storage by prehistoric hunter-gatherers in Europe. In Bad Year Economics: Cultural Responses to Risk and Uncertainty; Cambridge University Press: Cambridge, UK, 1989; pp. 40–56. [Google Scholar]
- Price, T.D.; Brown, J.A. Aspects of hunter-gatherer complexity. In Prehistoric Hunter-Gatherers: The Emergence of Cultural Complexity; Academic Press: Cambridge, MA, USA, 1985; pp. 3–20. [Google Scholar]
- Bard, K.A. Toward an interpretation of the role of ideology in the evolution of complex society in Egypt. J. Anthropol. Archaeol. 1992, 11, 1–24. [Google Scholar] [CrossRef]
- Bender, B. Gatherer-hunter to farmer: A social perspective. World Archaeol. 1978, 10, 204–222. [Google Scholar] [CrossRef]
- Hayden, B. Practical and prestige technologies: The evolution of material systems. J. Archaeol. Method Theory 1998, 5, 1–55. [Google Scholar] [CrossRef]
Water–Food | Growing access to irrigation increasing global fertilizer and associated nutrient runoff (water pollution) | |
Food–Water | Reduction of water vulnerability via water embedded in imported food (i.e., virtual water) | |
Water–Energy | Groundwater pumping for irrigation reducing streamflows for hydropower production | |
Energy–Water | Water storage for hydropower that otherwise supports agriculture and wildlife | |
Energy–Food | Wide-spread use of mechanized farm equipment to support large-scale agriculture | |
Food–Energy | Composting food waste for energy production |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katz, S.L.; Padowski, J.C.; Goldsby, M.; Brady, M.P.; Hampton, S.E. Defining the Nature of the Nexus: Specialization, Connectedness, Scarcity, and Scale in Food–Energy–Water Management. Water 2020, 12, 972. https://doi.org/10.3390/w12040972
Katz SL, Padowski JC, Goldsby M, Brady MP, Hampton SE. Defining the Nature of the Nexus: Specialization, Connectedness, Scarcity, and Scale in Food–Energy–Water Management. Water. 2020; 12(4):972. https://doi.org/10.3390/w12040972
Chicago/Turabian StyleKatz, Stephen L., Julie C. Padowski, Michael Goldsby, Michael P. Brady, and Stephanie E. Hampton. 2020. "Defining the Nature of the Nexus: Specialization, Connectedness, Scarcity, and Scale in Food–Energy–Water Management" Water 12, no. 4: 972. https://doi.org/10.3390/w12040972
APA StyleKatz, S. L., Padowski, J. C., Goldsby, M., Brady, M. P., & Hampton, S. E. (2020). Defining the Nature of the Nexus: Specialization, Connectedness, Scarcity, and Scale in Food–Energy–Water Management. Water, 12(4), 972. https://doi.org/10.3390/w12040972