Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats
Abstract
:1. Introduction
2. E. coli and the Environment
2.1. Temperature
2.2. Solar Insolation
2.3. Suspended and Settled Solids
2.4. Hydrologic Conditions
2.5. Water Chemistry
2.6. Nutrients and Nutrient Availability
2.7. Land-Use Practices
3. Mitigation Strategies
4. Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Savageau, M.A. Escherichia coli Habitats, Cell Types, and Molecular Mechanisms of Gene Control. Am. Nat. 1983, 122, 732–744. [Google Scholar] [CrossRef]
- Freter, R. Factors controlling the composition of the intestinal microflor. Sp. Suppl. Microbiol. 1976, 1, 109–120. [Google Scholar]
- Bonde, G.J. Pollution of a marine environment. J. Water Pollut. 1967, 39, R45–R63. [Google Scholar]
- Wetzel, R.G. Limnology, 1st ed.; W.B. Saunders Co: Philadelphia, PA, USA; London, UK; Toronto, ON, Canada, 1975. [Google Scholar]
- Marshall, K.C. Adsorption of Microorganisms to Soils and Sediment. In Adsorption of Microorganisms to Surface, 1st ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Bristow, L.A.; Mohr, W.; Ahmerkamp, S.; Kuypers, M.M.M. Nutrients that limit growth in the ocean. Curr. Biol. 2017, 27, R474–R478. [Google Scholar] [CrossRef] [Green Version]
- Chambers, P.A.; Vis, C.; Brua, R.B.; Guy, M.; Culp, J.M.; Benoy, G.A. Eutrophication of agricultural streams: Defining nutrient concentrations to protect ecological condition. Water Sci. Technol. 2008, 58, 2203–2210. [Google Scholar] [CrossRef] [Green Version]
- E. coli (Escherichia coli)|E. coli|CDC. Available online: https://www.cdc.gov/ecoli/index.html (accessed on 8 January 2020).
- WHO. World Water Day Report. Available online: https://www.who.int/water_sanitation_health/takingcharge.html (accessed on 12 December 2019).
- Causse, J.; Billen, G.; Garnier, J.; Henri-des-Tureaux, T.; Olasa, X.; Thammahacksa, C.; Latsachak, K.O.; Soulileuth, B.; Sengtaheuanghoung, O.; Rochelle-Newall, E. Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. J. Hydro-Environ. Res. 2015, 9, 496–507. [Google Scholar] [CrossRef]
- Wu, J.; Yunus, M.; Islam, M.S.; Emch, M. Influence of climate extremes and land use on fecal contamination of shallow tubewells in Bangladesh. Environ. Sci. Technol. 2016, 50, 2669–2676. [Google Scholar] [CrossRef] [Green Version]
- Rochelle-Newall, E.J.; Ribolzi, O.; Viguier, M.; Thammahacksa, C.; Silvera, N.; Latsachack, K.; Dinh, R.P.; Naporn, P.; Sy, H.T.; Soulileuth, B. Effect of land use and hydrological processes on Escherichia coli concentrations in streams of tropical, humid headwater catchments. Sci. Rep. 2016, 6, 32974. [Google Scholar] [CrossRef] [Green Version]
- Ishii, S.; Ksoll, W.B.; Hicks, R.E.; Sadowsky, M.J. Presence and Growth of Naturalized Escherichia coli in Temperate Soils from Lake Superior Watersheds. Appl. Environ. Microbiol. 2006, 72, 612–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, F.; Hubbart, J.A.; Kellner, E.; Kutta, E. Land-use-mediated Escherichia coli concentrations in a contemporary Appalachian watershed. Environ. Earth Sci. 2018, 77, 754. [Google Scholar] [CrossRef]
- Petersen, F.; Hubbart, J.A. Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds. Water 2020, 12, 1094. [Google Scholar] [CrossRef]
- McQuestin, O.J.; Shadbolt, C.T.; Ross, T. Quantification of the Relative Effects of Temperature, pH, and Water Activity on Inactivation of Escherichia coli in Fermented Meat by Meta-Analysis. Appl. Environ. Microbiol. 2009, 75, 6963–6972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, T.; Gill, C.O.; McMullen, L.M. The behaviour of log phase Escherichia coli at temperatures that fluctuate about the minimum for growth. Lett. Appl. Microbiol. 2004, 39, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Chick, H. An Investigation of the Laws of Disinfection. J. Hyg. 1908, 8, 92–158. [Google Scholar] [CrossRef] [Green Version]
- Blaustein, R.A.; Pachepsky, Y.; Hill, R.L.; Shelton, D.R.; Whelan, G. Escherichia coli survival in waters: Temperature dependence. Water Res. 2013, 47, 569–578. [Google Scholar] [CrossRef]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [Green Version]
- Ishii, S.; Yan, T.; Vu, H.; Hansen, D.L.; Hicks, R.E.; Sadowsky, M.J. Factors Controlling Long-Term Survival and Growth of Naturalized Escherichia coli Populations in Temperate Field Soils. Microbes Environ. 2010, 25, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Davies-Colley, R.J.; Bell, R.G.; Donnison, A.M. Sunlight inactivation of enterococci and fecal coliforms in sewage effluent diluted in seawater. Appl. Environ. Microbiol. 1994, 60, 2049–2058. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, R.S.; Hashimoto, H.H.; Siwak, E.B.; Young, R.H. Effect of sunlight on survival of indicator bacteria in seawater. Appl. Environ. Microbiol. 1981, 41, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Sinton, L.W.; Finlay, R.K.; Lynch, P.A. Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl. Environ. Microbiol. 1999, 65, 3605–3613. [Google Scholar] [CrossRef] [Green Version]
- Whitman, R.L.; Nevers, M.B.; Korinek, G.C.; Byappanahalli, M.N. Solar and Temporal Effects on Escherichia coli Concentration at a Lake Michigan Swimming Beach. Appl. Environ. Microbiol. 2004, 70, 4276–4285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maraccini, P.A.; Mattioli, M.C.C.; Sassoubre, L.M.; Cao, Y.; Griffith, J.F.; Ervin, J.S.; van de Werfhorst, L.C.; Boehm, A.B. Solar Inactivation of Enterococci and Escherichia coli in Natural Waters: Effects of Water Absorbance and Depth. Environ. Sci. Technol. 2016, 50, 5068–5076. [Google Scholar] [CrossRef] [PubMed]
- Muela, A.; Garcia-Bringas, J.M.; Arana, I.; Barcina, I. The Effect of Simulated Solar Radiation on Escherichia coli: The Relative Roles of UV-B, UV-A, and Photosynthetically Active Radiation. Microb. Ecol. 2000, 39, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Petersen, F.; Hubbart, J.A. Quantifying Escherichia coli and Suspended Particulate Matter Concentrations in a Mixed-Land Use Appalachian Watershed. Water 2020, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Grossart, H.-P. Ecological consequences of bacterioplankton lifestyles: Changes in concepts are needed. Environ. Microbiol. Rep. 2010, 2, 706–714. [Google Scholar] [CrossRef]
- Drummond, J.D.; Davies-Colley, R.J.; Stott, R.; Sukias, J.P.; Nagels, J.W.; Sharp, A.; Packman, A.I. Microbial transport, retention, and inactivation in streams: A combined experimental and stochastic modeling approach. Environ. Sci. Technol. 2015, 49, 7825–7833. [Google Scholar] [CrossRef]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251. [Google Scholar] [CrossRef]
- Corno, G.; Coci, M.; Giardina, M.; Plechuk, S.; Campanile, F.; Stefani, S. Antibiotics promote aggregation within aquatic bacterial communities. Front. Microbiol. 2014, 5, 297. [Google Scholar] [CrossRef] [PubMed]
- Mamane, H. Impact of particles on UV disinfection of water and wastewater effluents: A review. Rev. Chem. Eng. 2008, 24, 67–157. [Google Scholar] [CrossRef]
- Tang, K.W.; Dziallas, C.; Grossart, H.-P. Zooplankton and aggregates as refuge for aquatic bacteria: Protection from UV, heat and ozone stresses used for water treatment. Environ. Microbiol. 2011, 13, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Callieri, C.; Amalfitano, S.; Corno, G.; Bertoni, R. Grazing-induced Synechococcus microcolony formation: Experimental insights from two freshwater phylotypes. FEMS Microbiol. Ecol. 2016, 92, fiw154. [Google Scholar]
- Czajkowski, D.; Witkowska-Gwiazdowska, A.; Sikorska, I.; Boszczyk-Maleszak, H.; Horoch, M. Survival of Escherichia coli Serotype O157:H7 in Water and in Bottom-Shore Sediments. Pol. J. Environ. Stud. 2005, 14, 423–430. [Google Scholar]
- Pachepsky, Y.A.; Shelton, D.R. Escherichia Coli and Fecal Coliforms in Freshwater and Estuarine Sediments. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1067–1110. [Google Scholar] [CrossRef]
- Jamieson, R.; Joy, D.M.; Lee, H.; Kostaschuk, R.; Gordon, R. Persistence of enteric bacteria in alluvial streams. J. Environ. Eng. Sci. 2004, 3, 202–213. [Google Scholar] [CrossRef]
- Anderson, K.L.; Whitlock, J.E.; Harwood, V.J. Persistence and Differential Survival of Fecal Indicator Bacteria in Subtropical Waters and Sediments. Appl. Environ. Microbiol. 2005, 71, 3041–3048. [Google Scholar] [CrossRef] [Green Version]
- Garzio-Hadzick, A.; Shelton, D.R.; Hill, R.L.; Pachepsky, Y.A.; Guber, A.K.; Rowland, R. Survival of manure-borne E. coli in streambed sediment: Effects of temperature and sediment properties. Water Res. 2010, 44, 2753–2762. [Google Scholar] [CrossRef]
- Ribolzi, O.; Cuny, J.; Sengsoulichanh, P.; Mousquès, C.; Soulileuth, B.; Pierret, A.; Huon, S.; Sengtaheuanghoung, O. Land Use and Water Quality Along a Mekong Tributary in Northern Lao P.D.R. Environ. Manag. 2011, 47, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Ekklesia, E.; Shanahan, P.; Chua, L.H.C.; Eikaas, H.S. Temporal variation of faecal indicator bacteria in tropical urban storm drains. Water Res. 2015, 68, 171–181. [Google Scholar] [CrossRef]
- Knierim, K.J.; Hays, P.D.; Bowman, D. Quantifying the variability in Escherichia coli (E. coli) throughout storm events at a karst spring in northwestern Arkansas, United States. Environ. Earth Sci. 2015, 74, 4607–4623. [Google Scholar] [CrossRef]
- Hunter, C.; McDonald, A.; Beven, K. Input of fecal coliform bacteria to an upland stream channel in the Yorkshire Dales. Water Resour. Res. 1992, 28, 1869–1876. [Google Scholar] [CrossRef]
- Weiskel, P.K.; Howes, B.L.; Heufelder, G.R. Coliform Contamination of a Coastal Embayment: Sources and Transport Pathways. Environ. Sci. Technol. 1996, 30, 1872–1881. [Google Scholar] [CrossRef]
- Ribolzi, O.; Evrard, O.; Huon, S.; Rochelle-Newall, E.; Henri-des-Tureaux, T.; Silvera, N.; Thammahacksac, C.; Sengtaheuanghoung, O. Use of fallout radionuclides (7Be, 210Pb) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment. Environ. Sci. Pollut. Res. 2016, 23, 3427–3435. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.K.; Soupir, M.L. Assessing the Impacts of E. coli Laden Streambed Sediment on E. coli Loads over a Range of Flows and Sediment Characteristics. J. Am. Water Resour. Assoc. 2013, 49, 1261–1269. [Google Scholar] [CrossRef]
- Wilkinson, J.; Kay, D.; Wyer, M.; Jenkins, A. Processes driving the episodic flux of faecal indicator organisms in streams impacting on recreational and shellfish harvesting waters. Water Res. 2006, 40, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Presser, K.A.; Ratkowsky, D.A.; Ross, T. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol. 1997, 63, 2355–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Ryu, J.-H.; Beuchat, L.R. Influence of temperature and pH on survival of Escherichia coli O157:H7 in dry foods and growth in reconstituted infant rice cereal. Int. J. Food Microbiol. 1998, 45, 173–184. [Google Scholar] [CrossRef]
- Conner, D.E.; Kotrola, J.S. Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl. Environ. Microbiol. 1995, 61, 382–385. [Google Scholar] [CrossRef] [Green Version]
- De W Blackburn, C.; Curtis, L.M.; Humpheson, L.; Billon, C.; McClure, P.J. Development of thermal inactivation models for Salmonella enteritidis and Escherichia coli O157:H7 with temperature, pH and NaCl as controlling factors. Int. J. Food Microbiol. 1997, 38, 31–44. [Google Scholar] [CrossRef]
- Small, P.; Blankenhorn, D.; Welty, D.; Zinser, E.; Slonczewski, J.L. Acid and base resistance in Escherichia coli and Shigella flexneri: Role of rpoS and growth pH. J. Bacteriol. 1994, 176, 1729–1737. [Google Scholar] [CrossRef] [Green Version]
- Fontana, A.J. Appendix D: Minimum Water Activity Limits for Growth of Microorganisms. In Water Activity in Foods; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2008; p. 405. ISBN 978-0-470-37645-4. [Google Scholar]
- Owoseni, M.C.; Olaniran, A.O.; Okoh, A.I. Chlorine Tolerance and Inactivation of Escherichia coli recovered from Wastewater Treatment Plants in the Eastern Cape, South Africa. Appl. Sci. 2017, 7, 810. [Google Scholar] [CrossRef]
- Hrenovic, J.; Ivankovic, T. Survival of Escherichia coli and Acinetobacter junii at various concentrations of sodium chloride. EurAsia J. Biosci. 2009, 144–151. [Google Scholar] [CrossRef]
- Tate, R.L. Cultural and environmental factors affecting the longevity of Escherichia coli in Histosols. Appl. Environ. Microbiol. 1978, 35, 925–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, D.M. Water Potential as a Selective Factor in the Microbial Ecology of Soils 1. Water Potential Relat. Soil Microbiol. 1981, 9, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Milne, D.P.; Curran, J.C.; Findlay, J.S.; Crowther, J.M.; Bennet, J.; Wood, B.J.B. The Effect of Dissolved Nutrients and Inorganic Suspended Solids on the Survival of E. coli in Seawater. Water Sci. Technol. 1991, 24, 133–136. [Google Scholar] [CrossRef]
- Wu, S.Y.; Klein, D.A. Starvation effects on Escherichia coli and aquatic bacterial responses to nutrient addition and secondary warming stresses. Appl. Environ. Microbiol. 1976, 31, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Gotkowska-Plachta, A.; Golaś, I.; Korzeniewska, E.; Koc, J.; Rochwerger, A.; Solarski, K. Evaluation of the distribution of fecal indicator bacteria in a river system depending on different types of land use in the southern watershed of the Baltic Sea. Environ. Sci. Pollut. Res. 2016, 23, 4073–4085. [Google Scholar] [CrossRef]
- Jamieson, R.C.; Gordon, R.J.; Sharples, K.E.; Stratton, G.W.; Madani, A. Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: A review. Can. Biosyst. Eng. 2002, 44, 1–9. [Google Scholar]
- Rwego, I.B.; Gillspie, T.R.; Isabirye-Basuta, G.; Goldberg, T.L. High Rates of Escherichia coli Transmission between Livestock and Humans in Rural. J. Clin. Mircobiol. 2008, 46, 3187–3191. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.; Weng, Q. Assessing surface water quality and its relation with urban land cover changes in the Lake Calumet Area, Greater Chicago. Environ. Manag. 2010, 45, 1096–1111. [Google Scholar] [CrossRef]
- Fewtrell, L.; Kay, D. Recreational Water and Infection: A Review of Recent Findings. Curr. Environ. Health Rep. 2015, 2, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Dingman, S.L. Phyiscal Hydrology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; ISBN 0-13-099695-5. [Google Scholar]
- Syed, A.U.; Jodoin, R.S. Estimation of Nonpoint-Source Loads of Total Nitrogen, Total Phosphorous, and Total Suspended Solids in the Black, Belle, and Pine River Basins, Michigan, by Use of the PLOAD Model; USGS: Reston, VA, USA, 2006. [Google Scholar]
- Van der Tak, L.; Edwards, C. An ArcView GIS Tool to Calculate Nonpoint Sources of Pollution in Watershed and Stormwater Projects; USEPA: Washington, DC, USA, 2001. [Google Scholar]
- Howard, D.M. Aquatic Life Water Quality Standards Draft Technical Support Document for Total Suspended Solids (Turbidity); Minnesota Polution Control Agency: Saint Paul, MN, USA, 2011; pp. 1–50. [Google Scholar]
- Massoudieh, A.; Huang, X.; Young, T.M.; Mariño, M.A. Modeling Fate and Transport of Roadside-Applied Herbicides. J. Environ. Eng. 2005, 131, 1057–1067. [Google Scholar] [CrossRef]
- Olilo, C.O.; Muia, A.W.; Moturi, W.N.; Onyando, J.O.; Amber, F.R. The current state of knowledge on the interaction of Escherichia coli within vegetative filter strips as a sustainable best management practice to reduce fecal pathogen loading into surface waters. Energy Ecol. Environ. 2016, 1, 248–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, R.W.; Drewry, J.J.; Muirhead, R.W.; Paton, R.J. Restricting the grazing time of cattle to decrease phosphorus, sediment and E. coli losses in overland flow from cropland. Soil Res. 2005, 43, 61–66. [Google Scholar] [CrossRef]
- Warnemuende, E.A.; Kanwar, R.S. Effects of swine manure application on bacterial quality of leachate from intact soil columns. Am. Soc. Agric. Eng. 2002, 45, 1849–1857. [Google Scholar] [CrossRef]
- Bear, S.E.; Nguyen, M.T.; Jasper, J.T.; Nygren, S.; Nelson, K.L.; Sedlak, D.L. Removal of nutrients, trace organic contaminants, and bacterial indicator organisms in a demonstration-scale unit process open-water treatment wetland. Ecol. Eng. 2017, 109, 76–83. [Google Scholar] [CrossRef]
- Soller, J.; Bartrand, T.; Ravenscroft, J.; Molina, M.; Whelan, G.; Schoen, M.; Ashbolt, N. Estimated human health risks from recreational exposures to stormwater runoff containing animal faecal material. Environ. Model. Softw. 2015, 72, 21–32. [Google Scholar] [CrossRef]
- Meier, S.; Jensen, P.R.; Duus, J.O. Direct Observation of Metabolic Differences in Living Escherichia coli Strains K-12 and BL21. ChemBioChem 2012, 13, 308–310. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Safe Recreational Water Environments. Available online: http://www.who.int/water_sanitation_health/publications/srwe1/en/ (accessed on 20 March 2020).
- Crowther, J.; Kay, D.; Wyer, M.D. Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: Relationships with land use and farming practices. Water Res. 2002, 36, 1725–1734. [Google Scholar] [CrossRef]
- Servais, P.; Garcia-Armisen, T.; George, I.; Billen, G. Fecal bacteria in the rivers of the Seine drainage network (France): Sources, fate and modelling. Sci. Total Environ. 2007, 375, 152–167. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petersen, F.; Hubbart, J.A. Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats. Water 2020, 12, 1796. https://doi.org/10.3390/w12061796
Petersen F, Hubbart JA. Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats. Water. 2020; 12(6):1796. https://doi.org/10.3390/w12061796
Chicago/Turabian StylePetersen, Fritz, and Jason A. Hubbart. 2020. "Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats" Water 12, no. 6: 1796. https://doi.org/10.3390/w12061796
APA StylePetersen, F., & Hubbart, J. A. (2020). Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats. Water, 12(6), 1796. https://doi.org/10.3390/w12061796