Effect of Salinity on Evaporation from Water Surface in Bench-Scale Testing
Abstract
:1. Introduction
2. Research Methodology
3. Results and Discussion
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammer, U.T. Saline lake resources of the Canadian Prairies. Can. Water Resour. J. 1986, 11, 43–57. [Google Scholar] [CrossRef] [Green Version]
- Last, W.M.; Slezak, L.A. The salt lakes of western Canada: A paleolimnological overview. Hydrobiologia 1988, 158, 301–316. [Google Scholar] [CrossRef]
- Salhotra, A.M.; Adams, E.E.; Harleman, D.R.F. Effect of salinity and ionic composition on evaporation: Analysis of Dead Sea evaporation pans. Water Resour. Res. 1985, 21, 1336–1344. [Google Scholar] [CrossRef]
- Finch, J.W.; Calver, A. Methods for the Quantification of Evaporation from Lakes; Centre for Ecology & Hydrology: Oxfordshire, UK, 2008. [Google Scholar]
- Akridge, D.G. Methods for calculating brine evaporation rates during salt production. J. Archaeol. Sci. 2008, 35, 1453–1462. [Google Scholar] [CrossRef]
- Schulz, S.; Darehshouri, S.; Hassanzadeh, E.; Tajrishy, M.; Schüth, C. Climate change or irrigated agriculture—What drives the water level decline of Lake Urmia. Sci. Rep. 2020, 10, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trautz, A.C.; Illangasekare, T.H.; Howington, S. Experimental testing scale considerations for the investigation of bare-soil evaporation dynamics in the presence of sustained above-ground airflow. Water Resour. Res. 2018, 54, 8963–8982. [Google Scholar] [CrossRef]
- Lemmen, D.S.; Vance, R.E.; Campbell, I.A.; David, P.P.; Pennock, D.J.; Sauchyn, D.J.; Wolfe, S.A. Geomorphic Systems of the Palliser Triangle, Southern Canadian Prairies: Description and Response to Changing Climate; Natural Resources Canada: Ottawa, ON, Canada, 1998. [Google Scholar]
- Faurès, J.M.; Hoogeveen, J.; Winpenny, J.; Steduto, P.; Burke, J. Coping with Water Scarcity: An Action Framework for Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Akhter, A.; Azam, S. Flood-drought hazard assessment for a flat clayey deposit in the Canadian Prairies. J. Environ. Inform. Lett. 2019, 1, 8–19. [Google Scholar] [CrossRef]
- Fang, X.; Pomeroy, J.W. Drought impacts on Canadian prairie wetland snow hydrology. Hydrol. Process. 2008, 22, 2858–2873. [Google Scholar] [CrossRef]
- Cutlac, I.; Horbulyk, T.M. Optimal water allocation under short-run water scarcity in the South Saskatchewan River Basin. J. Water Resour. Plan. Manag. 2011, 137, 92–100. [Google Scholar] [CrossRef]
- Wheater, H.; Gober, P. Water security in the Canadian Prairies: Science and management challenges. Philos. Trans. Math. Phys. Eng. Sci. 2013, 371, 1–21. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Shook, K.R. Review of Lake Diefenbaker Operations 2010–2011; Centre for Hydrology, University of Saskatchewan: Saskatoon, SK, Canada, 2012. [Google Scholar]
- Hammer, U.T. The saline lakes of Saskatchewan, I. Background and rationale for saline lakes research. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1978, 63, 173–177. [Google Scholar] [CrossRef]
- Bowman, J.S.; Sachs, J.P. Chemical and physical properties of some saline lakes in Alberta and Saskatchewan. Saline Syst. 2008, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallin, J.E.; Pufahl, D.E.; Barbour, S.L. Waste management schemes of potash mines in Saskatchewan. Can. J. Civil. Eng. 1990, 17, 528–542. [Google Scholar] [CrossRef]
- Reid, K.W. Water use in Saskatchewan’s potash industry and opportunities for water recycling/conservation. Can. Water Resour. J. 1984, 9, 21–26. [Google Scholar] [CrossRef]
- Landine, P. Weathering and Diagenesis of Saskatchewan Potash Tailings; University of Saskatchewan: Saskatoon, SK, Canada, 1993. [Google Scholar]
- Christiansen, E.A. The Wisconsinan deglaciation, of southern Saskatchewan and adjacent areas. Can. J. Earth Sci. 1979, 16, 913–938. [Google Scholar] [CrossRef]
- Last, W.M.; Ginn, F.M. Saline systems of the Great Plains of western Canada: An overview of the limnogeology and paleolimnology. Saline Syst. 2005, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Bredehoeft, J.D.; Blyth, C.R.; White, W.A.; Maxey, G.B. Possible mechanism for concentration of brines in subsurface formations. Bull. Am. Assoc. Pet. Geol. 1963, 47, 257–269. [Google Scholar]
- Suchan, J.; Azam, S. Development of BAS2 for determination of evaporative fluxes. MethodsX 2021, 8, 101424. [Google Scholar] [CrossRef]
- Suchan, J.; Azam, S. Determination of Evaporative Fluxes Using a Bench-Scale Atmosphere Simulator. Water 2021, 13, 84. [Google Scholar] [CrossRef]
- İnan, M.; Özgür, S. Experimental investigation of evaporation from a horizontal free water surface. Sigma J. Eng. Nat. Sci. 2017, 35, 119–131. [Google Scholar]
- Mor, Z.; Assouline, S.; Tanny, J.; Lensky, I.M.; Lensky, N.G. Effect of water surface salinity on evaporation: The case of a diluted buoyant plume over the Dead Sea. Water Resour. Res. 2018, 54, 1460–1475. [Google Scholar] [CrossRef]
- Patel, S.S.; Rix, A.J. The impact of water surface albedo on incident solar insolation of a collector surface. In Proceedings of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020; pp. 1–6. [Google Scholar]
- Shuttleworth, W.J. Evaporation. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill Inc.: New York, NY, USA, 1993; pp. 4.1–4.53. [Google Scholar]
- Finch, J.W. A comparison between measured and modelled open water evaporation from a reservoir in south-east England. Hydrol. Process. 2001, 15, 2771–2778. [Google Scholar] [CrossRef]
- Granger, R.J.; Gray, D.M. Evaporation from natural nonsaturated surfaces. J. Hydrol. 1989, 111, 21–29. [Google Scholar] [CrossRef]
- Vázquez, O.; Thomachot-Schneider, C.; Mouhoubi, K.; Gommeaux, M.; Fronteau, G.; Barbin, V.; Bodnar, J. Study of NaCl crystallization with passive infrared thermography. In Proceedings of the SWBSS 3rd International Conference on Salt Weathering of Buildings and Stone Sculptures, Brussels, Belgium, 14–16 October 2014. [Google Scholar]
- Himus, G.W.; Hinchley, J.W. The effect of a current of air on the rate of evaporation of water below the boiling point. J. Soc. Chem. Ind. 1924, 43, 840–845. [Google Scholar] [CrossRef]
- Meyer, A.F. Evaporation from Lakes and Reservoirs; Minnesota Resources Commission: St. Paul, MN, USA, 1942. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. 1948, 193, 120–145. [Google Scholar]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- De Bruin, H.; Keijman, J.Q. The Priestley-Taylor evaporation model applied to a large, shallow lake in the Netherlands. J. Appl. Meteorol. 1979, 18, 898–903. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Bastiaanssen, W.G.M. Evaluation of three energy balance-based evaporation models for estimating monthly evaporation for five lakes using derived heat storage changes from a hysteresis model. Environ. Res. Lett. 2017, 12, 024005. [Google Scholar] [CrossRef] [Green Version]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2004. [Google Scholar]
Weather Scenario | Date Range (Month) | Duration (Hours) | Air Velocity (m∙s−1) | Air Humidity (g∙m−3) | Air Temperature (°C) | Solar Irradiance (W∙m−2) | Surface Temperature (°C) |
---|---|---|---|---|---|---|---|
Day | March–November | 3706 | |||||
Spring | March–May | 883 | 1.7 | 5.0 | 10.0 | 325 | 12 |
Summer | May–September | 1755 | 1.3 | 9.0 | 19.0 | 325 | 22 |
Fall | September–November | 541 | 1.6 | 5.0 | 9.0 | 210 | 13 |
Night | April–November | 1827 | |||||
Spring | April–May | 206 | 1.3 | 5.0 | 9.0 | 0 | 6 |
Summer | May–September | 761 | 1.3 | 8.5 | 13.0 | 0 | 17 |
Fall | September–November | 277 | 1.5 | 5.5 | 9.0 | 0 | 16 |
Parameter | Unit | Symbol | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | Night | |||||||||||||
Spring | Summer | Fall | Spring | Summer | Fall | |||||||||
W | B | W | B | W | B | W | B | W | B | W | B | |||
Count | n | 1102 | 1988 | 1236 | 2161 | 1184 | 2161 | 1250 | 2158 | 1084 | 1777 | 1232 | 2161 | |
Atmosphere | ||||||||||||||
Momentum | ||||||||||||||
Velocity | m∙s−1 | 1.7 | 1.7 | 1.3 | 1.3 | 1.6 | 1.6 | 1.3 | 1.3 | 1.3 | 1.3 | 1.5 | 1.5 | |
Mass | ||||||||||||||
Air Pressure | Pa | 94,294 | 95,893 | 95,397 | 95,134 | 93,414 | 95,293 | 94,484 | 95,845 | 94,407 | 93,256 | 95,060 | 92,866 | |
Relative Humidity | ||||||||||||||
Upwind, High | % | 50.8 | 50.7 | 51.3 | 52.0 | 55.1 | 53.9 | 54.4 | 54.5 | 75.2 | 76.0 | 60.7 | 64.8 | |
Downwind, High | % | 53.5 | 53.0 | 51.9 | 52.9 | 57.5 | 56.4 | 55.5 | 55.7 | 80.5 | 76.6 | 61.2 | 66.1 | |
Upwind, Low | % | 52.7 | 53.2 | 55.0 | 55.3 | 56.5 | 56.4 | 56.6 | 56.7 | 75.1 | 74.9 | 62.3 | 62.2 | |
Downwind, Low | % | 55.7 | 56.2 | 57.6 | 57.8 | 59.9 | 59.6 | 59.5 | 59.5 | 80.5 | 80.3 | 66.2 | 68.4 | |
Energy | ||||||||||||||
Temperature | ||||||||||||||
Upwind, High | °C | 10.8 | 11.0 | 20.7 | 20.5 | 9.5 | 9.8 | 9.7 | 9.6 | 13.7 | 13.7 | 9.7 | 9.4 | |
Downwind, High | °C | 10.3 | 10.5 | 20.4 | 20.2 | 9.0 | 9.3 | 9.5 | 9.4 | 13.0 | 13.6 | 9.4 | 9.1 | |
Upwind, Low | °C | 10.1 | 10.1 | 19.0 | 19.0 | 8.9 | 9.1 | 9.1 | 8.9 | 12.9 | 13.1 | 8.9 | 9.0 | |
Downwind, Low | °C | 9.9 | 10.0 | 19.2 | 19.1 | 8.8 | 9.0 | 9.0 | 8.9 | 13.0 | 13.1 | 8.9 | 9.0 | |
Shortwave Flux (↓) | W∙m−2 | 325 | 325 | 325 | 325 | 210 | 210 | 0 | 0 | 0 | 0 | 0 | 0 | |
Surface | ||||||||||||||
Mass | ||||||||||||||
Mass Rate Change (× 10−4) | g∙s−1 | 2.17 | 1.12 | 2.79 | 1.72 | 2.39 | 1.34 | 0.93 | 0.34 | 1.60 | 0.59 | 2.68 | 1.54 | |
Energy | ||||||||||||||
Shortwave Flux (↑) | W∙m−2 | 2 | 2 | 2 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
Temperature | °C | 12 | 12 | 22 | 22 | 13 | 13 | 6 | 6 | 17 | 17 | 16 | 16 |
Parameter | Unit | Symbol | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | Night | |||||||||||||
Spring | Summer | Fall | Spring | Summer | Fall | |||||||||
W | B | W | B | W | B | W | B | W | B | W | B | |||
Atmosphere | ||||||||||||||
Momentum | ||||||||||||||
Aero. Resistance | s∙m−1 | 41.4 | 41.4 | 46.6 | 46.8 | 42.6 | 42.6 | 46.6 | 46.6 | 46.6 | 46.6 | 43.9 | 43.9 | |
Mass | ||||||||||||||
Vapor Density | g∙m−3 | 5.0 | 5.0 | 9.0 | 9.0 | 5.0 | 5.0 | 5.0 | 5.0 | 8.5 | 8.5 | 5.5 | 5.5 | |
Vapor Pressure | ||||||||||||||
Partial | Pa | 650 | 658 | 1209 | 1215 | 646 | 651 | 652 | 648 | 1117 | 1126 | 712 | 715 | |
Saturated | Pa | 1234 | 1211 | 2198 | 2152 | 1144 | 1131 | 1153 | 1121 | 1488 | 1473 | 1144 | 1125 | |
Deficit | Pa | 584 | 554 | 989 | 938 | 498 | 480 | 501 | 473 | 371 | 347 | 431 | 411 | |
Energy | ||||||||||||||
Longwave Flux (↓) | J∙s−1∙m−2 | 284 | 284 | 340 | 340 | 279 | 280 | 280 | 280 | 313 | 314 | 282 | 283 | |
Surface | ||||||||||||||
Mass | ||||||||||||||
Vapor Pressure | ||||||||||||||
Saturated | Pa | 1402 | 1375 | 2646 | 2593 | 1498 | 1468 | 936 | 927 | 1938 | 1899 | 1820 | 1784 | |
Deficit | Pa | 752 | 717 | 1437 | 1379 | 852 | 817 | 284 | 279 | 821 | 773 | 1108 | 1069 | |
Energy | ||||||||||||||
Longwave Flux (↑) | J∙s−1∙m−2 | 367 | 367 | 422 | 422 | 373 | 373 | 337 | 338 | 394 | 394 | 389 | 388 | |
Net Radiant Heat Flux | J∙s−1∙m−2 | 241 | 241 | 241 | 242 | 117 | 118 | −58 | −59 | −80 | −79 | −107 | −106 | |
Evaporative Heat Flux | J∙s−1∙m−2 | 359 | 189 | 464 | 291 | 398 | 226 | 160 | 57 | 258 | 97 | 432 | 258 | |
Sensible Heat Flux | J∙s−1∙m−2 | 46 | 24 | 47 | 29 | 112 | 60 | −114 | −39 | 74 | 28 | 167 | 100 | |
Ground Heat Flux | J∙s−1∙m−2 | −164 | 28 | −270 | −78 | −393 | −168 | −104 | −77 | −412 | −204 | −706 | −464 | |
Available Energy | J∙s−1∙m−2 | 405 | 213 | 511 | 320 | 509 | 286 | 46 | 19 | 332 | 125 | 599 | 358 | |
Evaporative Flux (×10−4) | J∙s−1∙m−2 | 1452 | 764 | 1856 | 1187 | 1591 | 915 | 613 | 230 | 1059 | 394 | 1790 | 1048 |
Method | Best Fit | Coefficient of Determination (R2) | Residual Sum of Squares (SSE) | Regression Sum of Squares (SSR) | Total Sum of Squares (TSS) |
---|---|---|---|---|---|
BAS2 | Logarithmic | 0.9910 | 1 × 10−4 | 0.0112 | 0.0113 |
[32] | Linear | 0.9997 | 3 × 10−6 | 0.0080 | 0.0080 |
[33] | Linear | 0.9994 | 6 × 10−6 | 0.0102 | 0.0102 |
[34] | Linear | 0.9997 | 8 × 10−6 | 0.0129 | 0.0129 |
[35] | Logarithmic | 0.9616 | 5 × 10−4 | 0.0129 | 0.0134 |
[36] | Logarithmic | 0.9778 | 2 × 10−3 | 0.0433 | 0.0453 |
[37] | Logarithmic | 0.9559 | 1 × 10−3 | 0.0313 | 0.0327 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchan, J.; Azam, S. Effect of Salinity on Evaporation from Water Surface in Bench-Scale Testing. Water 2021, 13, 2067. https://doi.org/10.3390/w13152067
Suchan J, Azam S. Effect of Salinity on Evaporation from Water Surface in Bench-Scale Testing. Water. 2021; 13(15):2067. https://doi.org/10.3390/w13152067
Chicago/Turabian StyleSuchan, Jared, and Shahid Azam. 2021. "Effect of Salinity on Evaporation from Water Surface in Bench-Scale Testing" Water 13, no. 15: 2067. https://doi.org/10.3390/w13152067
APA StyleSuchan, J., & Azam, S. (2021). Effect of Salinity on Evaporation from Water Surface in Bench-Scale Testing. Water, 13(15), 2067. https://doi.org/10.3390/w13152067