Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. CE-QUAL-W2 Model
2.3. Model Calibration
2.3.1. HS and IGHS Algorithms
- IGHS Memory Initialization
- IGHS Memory Improvisation
2.3.2. PSO Algorithm
2.4. Model Validation
2.5. Uncertainty of Automatic Calibration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flowers, J.D.; Hauck, L.M.; Kiesling, R.L. USDA: Lake Waco-Bosque River Initiative Water Quality Modeling of Lake Waco Using CE-QUAL-W2 for Assessment of Phosphorus Control Strategies; Texas Institute for Applied Environmental Research: Stephenville, TX, USA, 2001; p. 76. [Google Scholar]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.1; US Army Engineering and Research Development Center: Vicksburg, MS, USA, 2003; p. 630. [Google Scholar]
- Debele, B.; Srinivasan, R.; Parlange, J.Y. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environ. Modeling Assess. 2008, 13, 135–153. [Google Scholar] [CrossRef]
- Bowen, J.D.; Harrigan, N.B. Water Quality Model Calibration via a Full-Factorial Analysis of Algal Growth Kinetic Parameters. J. Mar. Sci. Eng. 2018, 6, 137. [Google Scholar] [CrossRef] [Green Version]
- Lindenschmidt, K.-E.; Carr, M.K.; Sadeghian, A.; Morales-Marin, L. CE-QUAL-W2 model of dam outflow elevation impact on temperature, dissolved oxygen and nutrients in a reservoir. Sci. Data 2019, 6, 312. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, B. Application of a 2-Dimensional Water Quality Model (CE-QUAL-W2) to the Turbidity Interflow in a Deep Reservoir (Lake Soyang, Korea). Lake Reserv. Manag. 2006, 22, 213–222. [Google Scholar] [CrossRef]
- Noori, R.; Berndtsson, R.; Franklin Adamowski, J.; Rabiee Abyaneh, M. Temporal and depth variation of water quality due to thermal stratification in Karkheh Reservoir, Iran. J. Hydrol. Reg. Stud. 2018, 19, 279–286. [Google Scholar] [CrossRef]
- Shabani, A.; Zhang, X.; Chu, X.; Dodd, T.P.; Zheng, H. Mitigating Impact of Devils Lake Flooding on the Sheyenne River Sulfate Concentration. J. Am. Water Resour. Assoc. 2020, 56, 297–309. [Google Scholar] [CrossRef]
- Noori, R.; Tian, F.; Ni, G.; Bhattarai, R.; Hooshyaripor, F.; Klöve, B. ThSSim: A novel tool for simulation of reservoir thermal stratification. Sci. Rep. 2019, 9, 18524. [Google Scholar] [CrossRef] [Green Version]
- Buccola, N.L.; Stonewall, A.J. Development of a CE-QUAL-W2 Temperature Model for Crystal Springs Lake, Portland, Oregon; Open-File Report 2016–1076; United States Geological Survey: Reston, VA, USA, 2016. [Google Scholar]
- Shabani, A.; Zhang, X.; Ell, M. Modeling Water Quantity and Sulfate Concentrations in the Devils Lake Watershed Using Coupled SWAT and CE-QUAL-W2. J. Am. Water Resour. Assoc. 2017, 53, 748–760. [Google Scholar] [CrossRef]
- Afshar, A.; Shojaei, N.; Sagharjooghifarahani, M. Multiobjective Calibration of Reservoir Water Quality Modeling Using Multiobjective Particle Swarm Optimization (MOPSO). Water Resour. Manag. 2013, 27, 1931–1947. [Google Scholar] [CrossRef]
- Tayfur, G. Modern Optimization Methods in Water Resources Planning, Engineering and Management. Water Resour. Manag. 2017, 31, 3205–3233. [Google Scholar] [CrossRef]
- Maier, H.R.; Kapelan, Z.; Kasprzyk, J.; Kollat, J.; Matott, L.S.; Cunha, M.C.; Dandy, G.C.; Gibbs, M.S.; Keedwell, E.; Marchi, A.; et al. Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions. Environ. Model. Softw. 2014, 62, 271–299. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.G.; Kim, J.H. Meta-heuristic algorithms as tools for hydrological science. Geosci. Lett. 2014, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Afshar, A.; Kazemi, H.; Saadatpour, M. Particle Swarm Optimization for Automatic Calibration of Large Scale Water Quality Model (CE-QUAL-W2): Application to Karkheh Reservoir, Iran. Water Resour. Manag. 2011, 25, 2613–2632. [Google Scholar] [CrossRef]
- Ostfeld, A.; Salomons, S. A hybrid genetic—Instance based learning algorithm for CE-QUAL-W2 calibration. J. Hydrol. 2005, 310, 122–142. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Xu, H. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrol. Earth Syst. Sci. 2016, 20, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, H. Calibration of Large Scale Water Quality Model (CE-QUAL-W2) by Hybrid Algorithm. Master’s Thesis, Iran University of Science and Technology, Tehran, Iran, 2010. [Google Scholar]
- Evers, G.I.; Ghalia, M.B. Regrouping particle swarm optimization: A new global optimization algorithm with improved performance consistency across benchmarks. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 3901–3908. [Google Scholar]
- Zong Woo, G.; Joong Hoon, K.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Ayvaz, M.T. Solution of Groundwater Management Problems Using Harmony Search Algorithm. In Recent Advances in Harmony Search Algorithm; Geem, Z.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 270. [Google Scholar]
- Karahan, H.; Gurarslan, G.; Geem Zong, W. Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm. J. Hydrol. Eng. 2013, 18, 352–360. [Google Scholar] [CrossRef]
- Xiang, W.; An, M.; Li, Y.; He, R.; Zhang, J. An improved global-best harmony search algorithm for faster optimization. Expert Syst. Appl. 2014, 41, 5788–5803. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Easterling, D.; Peterson, T.; Webb, R. Understanding and Explaining Hydro-Climate Variation at Devils Lake; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2010; pp. 1–21. [Google Scholar]
- Automated Surface Observing Systems. Hourly Climate Data. Available online: https://www.weather.gov/asos/asostech (accessed on 1 August 2018).
- Neitsch, S.L.; Arnold, J.G.; Williams, J.R. Soil and Water Assessment Tool Theorethical Documentation Version 2009; Texas Water Resource Institute: College Station, TX, USA, 2009; p. 647. [Google Scholar]
- The North Dakota State Water Commission. Devils Lake Outlets Discharge Monitoring Reports. Available online: https://www.swc.nd.gov/basins/devils_lake/outlets/ (accessed on 1 August 2018).
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Zürich, Switzerland, 2014; p. 106. [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Shojaei, N. Automatic Calibration of Water Quality Model and Hydrodynamic Model (CE-QUAL-W2); Portland State University: Portland, OR, USA, 2014. [Google Scholar]
- Noori, R.; Asadi, N.; Deng, Z. A simple model for simulation of reservoir stratification. J. Hydraul. Res. 2019, 57, 561–572. [Google Scholar] [CrossRef]
- United States Army Corps of Engineer. Application and Calibration of the CE-QUAL-W2 Version 3.71 Hydrodynamic and Water Quality Model for Zorinsky Reservoir; USACE: Omaha, NE, USA, 2015; pp. 1–171.
CE-QUAL-W2 Model Parameters | Name | Default Values | Feasible Ranges [3] |
---|---|---|---|
Wind sheltering coefficient | WSC | 1.0 | 0.5–2.0 |
Fraction of solar radiation absorbed within 0.6 m depth of water | BETA | 0.45 | 0.20–0.8 |
Solar radiation extinction coefficient (m−1) | GICE | 0.07 | 0.01–0.14 |
Coefficient of water–ice heat exchange through the melt layer (W m−2 °C) | HWICE | 10.0 | 5.0–15.0 |
Fraction of solar radiation reflected by the ice surface | ALBEDO | 0.25 | 0.20–0.30 |
Temperature above which ice formation is not allowed (°C) | ICET | 3.0 | 2.0–4.0 |
Calibration Method | CE-QUAL-W2 Parameter Value | RMSE (°C) | ||||||
---|---|---|---|---|---|---|---|---|
WSC | BETA | GICE | HWICE | ALBEDO | ICET | Calibration | Validation | |
IGHS | 1.62 | 0.31 | 0.14 | 7.79 | 0.29 | 3.15 | 1.23 | 0.77 |
PSO | 1.14 | 0.49 | 0.01 | 9.98 | 0.27 | 3.23 | 1.33 | 0.91 |
Manual | 2.0 | 0.7 | – | – | – | – | 1.8 | 1.0 |
Study Location | Simulation Length | Metric | Error (°C) |
---|---|---|---|
Devils Lake, USA (This study) | 8 years (2008–2016) | RMSE | 0.7–1.23 |
Lake Soyang, South Korea [6] | 7 years (1995–2002) | RMSE | 1.93 |
Karkheh Dam Reservoir, Iran [34] | One year (2005) | RMSE | 0.8 |
Karkheh Dam Reservoir, Iran [35] | ---- | MAE | 0.67–0.71 |
Crystal Spring Lake, USA [10] | One year (2014) | MAE | 0.2–0.6 |
Zorinksy Reservoir, USA [36] | 6 years (2008–2014) | MAE | 0.6–1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabani, A.; Zhang, X.; Chu, X.; Zheng, H. Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm. Water 2021, 13, 2308. https://doi.org/10.3390/w13162308
Shabani A, Zhang X, Chu X, Zheng H. Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm. Water. 2021; 13(16):2308. https://doi.org/10.3390/w13162308
Chicago/Turabian StyleShabani, Afshin, Xiaodong Zhang, Xuefeng Chu, and Haochi Zheng. 2021. "Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm" Water 13, no. 16: 2308. https://doi.org/10.3390/w13162308
APA StyleShabani, A., Zhang, X., Chu, X., & Zheng, H. (2021). Automatic Calibration for CE-QUAL-W2 Model Using Improved Global-Best Harmony Search Algorithm. Water, 13(16), 2308. https://doi.org/10.3390/w13162308