Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China
Abstract
:1. Introduction
2. Watershed Description
3. Methodology
3.1. Model Description and Modifications
3.2. Data Sources
3.3. Approach to Simplifying Subterranean Rivers for Hydrological Modeling of Karst Watersheds
3.3.1. Karst Survey and Tracer Test
3.3.2. DEM Data Modification
3.4. Model Setup
3.5. Model Calibration, Validation, and Performance Evaluation
4. Results
4.1. Identification of Flow Path of Karst Subterranean River
4.2. Results of Sub-Watershed Division Based on Modified DEM Data
4.3. Calibration, Validation, and Performance Evaluation
4.4. Water Balance Components
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Modified SWAT Code Availability Statement
References
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Jimenez-Martinez, J.; Longuevergne, L.; Le Borgne, T.; Davy, P.; Russian, A.; Bour, O. Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: Insights from a frequency domain analysis. Water Resour. Res. 2013, 49, 3007–3023. [Google Scholar] [CrossRef] [Green Version]
- Ojha, R.; Ramadas, M.; Govindaraju, R.S. Current and Future Challenges in Groundwater. I: Modeling and Management of Resources. J. Hydrol. Eng. 2015, 20, A4014007. [Google Scholar] [CrossRef]
- Goldscheider, N.; Drew, D. Methods in Karst Hydrogeology; Taylor & Francis: London, UK, 2007. [Google Scholar]
- White, W.B. Karst hydrology: Recent developments and open questions. Eng. Geol. 2002, 65, 85–105. [Google Scholar] [CrossRef]
- Pardo-Iguzquiza, E.; Dowd, P.; Bosch, A.P.; Luque-Espinar, J.A.; Heredia, J.; Duran-Valsero, J.J. A parsimonious distributed model for simulating transient water flow in a high-relief karst aquifer. Hydrogeol. J. 2018, 26, 2617–2627. [Google Scholar] [CrossRef]
- Dar, F.A.; Perrin, J.; Ahmed, S.; Narayana, A.C. Review: Carbonate aquifers and future perspectives of karst hydrogeology in India. Hydrogeol. J. 2014, 22, 1493–1506. [Google Scholar] [CrossRef]
- Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S. J. Hydrol. 2009, 369, 30–43. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, N.P.; Bouraoui, F.; Bidoglio, G. Hydrologic and geochemical modeling of a karstic Mediterranean watershed. J. Hydrol. 2013, 477, 129–138. [Google Scholar] [CrossRef]
- Baffaut, C.; Benson, V.W. Modeling Flow and Pollutant Transport in a Karst Watershed with SWAT. Trans. ASABE 2009, 52, 469–479. [Google Scholar] [CrossRef]
- Afinowicz, J.D.; Munster, C.L.; Wilcox, B.P. Modeling effects of brush management on the rangeland water budget: Edwards plateau, Texas. J. Am. Water Resour. Assoc. 2005, 41, 181–193. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Pang, S.; Wang, X.; Melching, C.S.; Feger, K.-H. Development and testing of a modified SWAT model based on slope condition and precipitation intensity. J. Hydrol. 2020, 588, 125098. [Google Scholar] [CrossRef]
- Marahatta, S.; Devkota, L.P.; Aryal, D. Application of SWAT in Hydrological Simulation of Complex Mountainous River Basin (Part I: Model Development). Water 2021, 13, 1546. [Google Scholar] [CrossRef]
- Asl-Rousta, B.; Mousavi, S.J.; Ehtiat, M.; Ahmadi, M. SWAT-Based Hydrological Modelling Using Model Selection Criteria. Water Resour. Manag. 2018, 32, 2181–2197. [Google Scholar] [CrossRef]
- Chen, M.; Cui, Y.; Gassman, P.; Srinivasan, R. Effect of Watershed Delineation and Climate Datasets Density on Runoff Predictions for the Upper Mississippi River Basin Using SWAT within HAWQS. Water 2021, 13, 422. [Google Scholar] [CrossRef]
- Marin, M.; Clinciu, I.; Tudose, N.C.; Ungurean, C.; Adorjani, A.; Mihalache, A.L.; Davidescu, A.A.; Davidescu, S.O.; Dinca, L.; Cacovean, H. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environ. Res. 2020, 184, 109330. [Google Scholar] [CrossRef] [PubMed]
- Amatya, D.M.; Edwards, A.E. Applying the SWAT hydrologic model on a watershed containing forested karst. Beneath Forest 2009, 1, 12–13. [Google Scholar]
- Amin, M.G.M.; Veith, T.L.; Collick, A.S.; Karsten, H.D.; Buda, A.R. Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agric. Water Manag. 2017, 180, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Reza Eini, M.; Javadi, S.; Delavar, M.; Gassman, P.W.; Jarihani, B. Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed. Catena 2020, 195, 104801. [Google Scholar] [CrossRef]
- Jakada, H.; Chen, Z. An approach to runoff modelling in small karst watersheds using the SWAT model. Arab. J. Geosci. 2020, 13, 318. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 169–173. [Google Scholar]
- Tobin, B.W.; Schwartz, B.F. Quantifying Concentrated and Diffuse Recharge in Two Marble Karst Aquifers: Big Spring and Tufa Spring, Sequoia and Kings Canyon National Parks, California, USA. J. Cave Karst Stud. 2012, 74, 186–196. [Google Scholar] [CrossRef]
- Jukic, D.; Denic-Jukic, V. Nonlinear kernel functions for karst aquifers. J. Hydrol. 2006, 328, 360–374. [Google Scholar] [CrossRef]
- Eris, E.; Wittenberg, H. Estimation of baseflow and water transfer in karst catchments in Mediterranean Turkey by nonlinear recession analysis. J. Hydrol. 2015, 530, 500–507. [Google Scholar] [CrossRef]
- Wang, Y.; Brubaker, K. Implementing a nonlinear groundwater module in the soil and water assessment tool (SWAT). Hydrol. Process. 2014, 28, 3388–3403. [Google Scholar] [CrossRef]
- Vale, M.; Holman, I.P. Understanding the hydrological functioning of a shallow lake system within a coastal karstic aquifer in Wales, UK. J. Hydrol. 2009, 376, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Li, Y.; Wang, Q.; Kuramochi, K.; Woli, K.P. Modeling the Water Balance Processes for Understanding the Components of River Discharge in a Non-conservative Watershed. Trans. ASABE 2011, 54, 2171–2180. [Google Scholar] [CrossRef]
- Gamvroudis, C.; Nikolaidis, N.P.; Tzoraki, O.; Papadoulakis, V.; Karalemas, N. Water and sediment transport modeling of a large temporary river basin in Greece. Sci. Total Environ. 2015, 508, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Malagò, A.; Efstathiou, D.; Bouraoui, F.; Nikolaidis, N.P.; Franchini, M.; Bidoglio, G.; Kritsotakis, M. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete. J. Hydrol. 2016, 540, 64–81. [Google Scholar] [CrossRef]
- Yactayo, G.A. Modification of the SWAT Model to Simulate Hydrologic Processes in a Karst-Influenced Watershed. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2009. [Google Scholar]
- Palanisamy, B.; Workman, S.R. Hydrologic Modeling of Flow through Sinkholes Located in Streambeds of Cane Run Stream, Kentucky. J. Hydrol. Eng. 2015, 20, 04014066. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Giannakis, G.V.; Efstathiou, D.; Nikolaidis, N.P.; Sibetheros, I.A.; Karatzas, G.P.; Zacharias, I. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed. Sci. Total Environ. 2015, 538, 288–297. [Google Scholar] [CrossRef]
- Nerantzaki, S.D.; Nikolaidis, N.P. The response of three Mediterranean karst springs to drought and the impact of climate change. J. Hydrol. 2020, 591, 125296. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, J.; Su, C.; Cui, Y.; Zhang, Q. The Application of Improved SWAT Model to Hydrological Cycle Study in Karst Area of South China. Sustainability 2019, 11, 5024. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; Dietrich, J.; Uniyal, B. Modeling interbasin groundwater flow in karst areas: Model development, application, and calibration strategy. Environ. Model. Softw. 2020, 124, 104606. [Google Scholar] [CrossRef]
- Staudinger, M.; Stoelzle, M.; Cochand, F.; Seibert, J.; Weiler, M.; Hunkeler, D. Your work is my boundary condition! Challenges and approaches for a closer collaboration between hydrologists and hydrogeologists. J. Hydrol. 2019, 571, 235–243. [Google Scholar] [CrossRef]
- Jin, X.; He, C.; Zhang, L.; Zhang, B. A Modified Groundwater Module in SWAT for Improved Streamflow Simulation in a Large, Arid Endorheic River Watershed in Northwest China. Chin. Geogr. Sci. 2018, 28, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Goldscheider, N.; Meiman, J.; Pronk, M.; Smart, C. Tracer tests in karst hydrogeology and speleology. Int. J. Speleol. 2008, 37, 27–40. [Google Scholar] [CrossRef] [Green Version]
- U.S. EPA. The Qtracer2 Program for Tracer-Breakthrough Curve Analysis for Tracer Tests in Karstic Aquifers and Other Hydrologic Systems; U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office: Washington, DC, USA, 2002; EPA/600/R-02/001.
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dubendorf, Switzerland, 2015; pp. 1–100. [Google Scholar]
- Abbaspour, K.; Vaghefi, S.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløved, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Rostamian, R.; Jaleh, A.; Afyuni, M.J.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K.C. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol. Sci. J. 2008, 53, 977–988. [Google Scholar] [CrossRef]
- Nagelkerke, N. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles—ScienceDirect. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Thavhana, M.P.; Savage, M.J.; Moeletsi, M.E. SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa. Phys. Chem. Earth Parts A/B/C 2018, 105, 115–124. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, W. Tiankengs in the karst of China. Speleogenesis Evol. Karst Aquifers 2006, 4, 1–18. [Google Scholar]
- Salvati, R.; Sasowsky, I.D. Development of collapse sinkholes in areas of groundwater discharge. J. Hydrol. 2002, 264, 1–11. [Google Scholar] [CrossRef]
- Boughton, W.C. A review of the USDA SCS curve number method. Soil Res. 1989, 27, 511–523. [Google Scholar] [CrossRef]
- Herman, E.K.; Toran, L.; White, W.B. Clastic sediment transport and storage in fluviokarst aquifers: An essential component of karst hydrogeology. Carbonates Evaporites 2012, 27, 211–241. [Google Scholar] [CrossRef]
- Herman, E.K.; Toran, L.; White, W.B. Threshold events in spring discharge: Evidence from sediment and continuous water level measurement. J. Hydrol. 2008, 351, 98–106. [Google Scholar] [CrossRef]
- Rahman, M.M.; Thompson, J.R.; Flower, R.J. An enhanced SWAT wetland module to quantify hydraulic interactions between riparian depressional wetlands, rivers and aquifers. Environ. Model. Softw. 2016, 84, 263–289. [Google Scholar] [CrossRef] [Green Version]
- Yen, H.; Wang, R.; Feng, Q.; Young, C.-C.; Chen, S.-T.; Tseng, W.-H.; Wolfe, J.E.; White, M.J.; Arnold, J.G. Input uncertainty on watershed modeling: Evaluation of precipitation and air temperature data by latent variables using SWAT. Ecol. Eng. 2018, 122, 16–26. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiorillo, F. Spring hydrographs as indicators of droughts in a karst environment. J. Hydrol. 2009, 373, 290–301. [Google Scholar] [CrossRef]
- Fiorillo, F. Tank-reservoir drainage as a simulation of the recession limb of karst spring hydrographs. Hydrogeol. J. 2011, 19, 1009–1019. [Google Scholar] [CrossRef]
Parameter | Code | Unit | Definition | Range |
---|---|---|---|---|
αup | ALPHA_UP | 1/days | Baseflow alpha factor of the upper reservoir | 0–1 |
αmid | ALPHA_MID | 1/days | Baseflow alpha factor of the middle reservoir | 0–1 |
αlow | ALPHA_LOW | 1/days | Baseflow alpha factor of the lower reservoir | 0–1 |
β1 | BETA_ON | none | Percolation fraction of upper reservoir into middle reservoir | 0–0.5 |
β2 | BETA_TW | none | Percolation fraction of upper reservoir into lower reservoir | 0.5–1 |
β3 | BETA_THR | none | Percolation fraction of middle reservoir into lower reservoir | 0–1 |
Kd | KST_DELAY | day | Delay time of karst recharge to groundwater | 0–10 |
Soil Name Abbreviation | DR | HA1 | HA2 | HL1 | HL2 | DC |
---|---|---|---|---|---|---|
FAO soil units | 11,389 | 11,839 | 11,843 | 11,868 | 11,869 | 11,870 |
Topsoil depth (cm) | 30 | 30 | 30 | 30 | 30 | 30 |
Topsoil gravel fraction (%) | 19 | 8 | 7 | 19 | 4 | 10 |
Topsoil sand fraction (%) | 42 | 40 | 24 | 31 | 41 | 42 |
Topsoil silt fraction (%) | 37 | 37 | 33 | 22 | 37 | 38 |
Topsoil clay fraction (%) | 21 | 23 | 43 | 47 | 22 | 20 |
Topsoil bulk density (g/cm3) | 1.33 | 1.19 | 1.21 | 1.31 | 1.43 | 1.3 |
Topsoil available water capacity (cm/cm) | 0.11 | 0.13 | 0.13 | 0.1 | 0.13 | 0.12 |
Topsoil organic carbon (% weight) | 1.39 | 1.16 | 1.08 | 1.2 | 0.74 | 1.45 |
Topsoil salty (ECE) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Subsoil depth (cm) | 70 | 70 | 70 | 70 | 70 | 70 |
Subsoil gravel fraction (%) | 26 | 7 | 10 | 28 | 3 | 19 |
Subsoil sand fraction (%) | 46 | 35 | 23 | 27 | 37 | 45 |
Subsoil silt fraction (%) | 34 | 33 | 31 | 20 | 34 | 35 |
Subsoil clay fraction (%) | 20 | 32 | 46 | 53 | 29 | 20 |
Subsoil bulk density (g/cm3) | 1.48 | 1.35 | 1.33 | 1.3 | 1.51 | 1.36 |
Subsoil available water content (cm/cm) | 0.09 | 0.12 | 0.12 | 0.09 | 0.13 | 0.10 |
Subsoil organic carbon (% weight) | 0.6 | 0.35 | 0.45 | 0.59 | 0.36 | 0.5 |
Subsoil salty (ECE) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Physical Parameters of Subterranean Rivers | Value |
---|---|
Average tracer velocity (m/h) | 119.67 |
Time to peak tracer concentration (h) | 45.7 |
Maximum tracer velocity (m/h) | 210.51 |
Cross-sectional area of conduits (m2) | 13.765 |
Surface area of subterranean rivers (m2) | 3.68 × 107 |
Diameter of conduits (m) | 4.19 |
Péclet number | 7.19 |
Reynolds number | 1.22 × 105 |
Percent recovery of tracer injected | 90.51% |
Parameter | Range | Modified SWAT Model | Original SWAT Model | ||||||
---|---|---|---|---|---|---|---|---|---|
Rank | t-Stat | p-Value | Fitted Value | Rank | t-Stat | p-Value | Fitted Value | ||
R_CN2 | [0, 0.5] | 1 | −24.34 | 0.00 | 0.21 | 1 | −11.57 | 0 | 0.19 |
V_PND_FR | [0, 1] | 2 | −17.35 | 0.00 | 0.09 | ||||
V_ESCO | [0.75, 1] | 3 | −3.57 | 0.00 | 0.85 | 10 | −0.4 | 0.69 | 0.85 |
V_GW_REVAP | [0, 0.2] | 4 | 2.96 | 0.00 | 0.01 | 9 | −0.61 | 0.54 | 0.005 |
R_SOL_BD (1 *) | [0, 0.5] | 5 | 2.74 | 0.01 | 0.33 | 3 | 4.78 | 0 | 0.32 |
V_αlow | [0, 1] | 6 | −2.03 | 0.04 | 0.00 | ||||
V_ALPHA_BNK | [0.2, 0.6] | 7 | 1.72 | 0.09 | 0.45 | 8 | 0.8 | 0.42 | 0.42 |
V_CH_N2 | [0.01, 0.04] | 8 | 1.23 | 0.22 | 0.02 | 2 | 5.52 | 0 | 0.019 |
V_GW_DELAY | [10, 200] | 9 | −1.13 | 0.26 | 107.70 | 6 | 0.99 | 0.32 | 100 |
R_SOL_K (1 *) | [0, 0.5] | 10 | −1.13 | 0.26 | 0.42 | 4 | 3.41 | 0 | 0.41 |
V_β1 | [0, 0.5] | 11 | 0.86 | 0.39 | 0.11 | ||||
V_αmid | [0, 1] | 12 | 0.79 | 0.43 | 0.05 | ||||
V_αup | [0, 1] | 13 | −0.65 | 0.51 | 0.01 | ||||
V_CH_K2 | [85, 140] | 14 | 0.47 | 0.64 | 136.30 | 5 | 1.26 | 0.21 | 105 |
V_β2 | [0.5, 1] | 15 | −0.39 | 0.70 | 0.91 | ||||
V_β3 | [0.5, 1] | 16 | −0.23 | 0.82 | 0.45 | ||||
V_Kd | [0, 10] | 17 | −0.12 | 0.91 | 1.56 | ||||
V_ALPHA_BF | [0, 1] | 7 | 0.96 | 0.34 | 0.018 |
Simulation Periods | Modified SWAT Model | Original SWAT Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P-Factor | R-Factor | R2 | NSE | PBIAS | P-Factor | R-Factor | R2 | NSE | PBIAS | |
Calibration (1993–1998) | 0.89 | 0.51 | 0.88 | 0.87 | 2.5% | 0.81 | 0.50 | 0.84 | 0.83 | 3.4% |
Validation A (1999–2002) | 0.88 | 0.52 | 0.84 | 0.83 | −1.9% | 0.80 | 0.51 | 0.79 | 0.77 | −2.2% |
Validation B (2003–2006) | 0.86 | 0.51 | 0.86 | 0.85 | −15% | 0.79 | 0.50 | 0.82 | 0.81 | −16% |
Hydrologic Component | Original SWAT Model | Modified SWAT Model |
---|---|---|
Average amount of precipitation in the watershed (mm) | 935.7 | 935.7 |
Actual evapotranspiration (mm) | 514.3 (55.0% amount of precipitation) | 512.4 (54.7% amount of precipitation) |
Water yield (mm) | 417.3 (44.6% amount of precipitation) | 419.0 (44.8% amount of precipitation) |
Surface runoff (mm) | 176.2 (18.8% amount of precipitation) | 167.1 (17.9% amount of precipitation) |
Lateral flow contribution to stream (mm) | 171.6 (18.3% amount of precipitation) | 147.9 (15.8%) amount of precipitation |
Total groundwater recharge (mm) | 73. 9 (7.9% amount of precipitation) | 108.5 (11.6% amount of precipitation) |
Groundwater evapotranspiration (mm) | 4.1 (5.5% groundwater recharge) | 4.3 (4.0% groundwater recharge) |
Groundwater contribution to stream (mm) | 69.5 (94.0% groundwater recharge) | 104.0 (93.5% groundwater recharge) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, X.; Zhang, C.; Zhang, F.; Chen, Z.; Nie, Z.; Liu, M. Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China. Water 2021, 13, 3552. https://doi.org/10.3390/w13243552
Geng X, Zhang C, Zhang F, Chen Z, Nie Z, Liu M. Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China. Water. 2021; 13(24):3552. https://doi.org/10.3390/w13243552
Chicago/Turabian StyleGeng, Xinxin, Chengpeng Zhang, Feng’e Zhang, Zongyu Chen, Zhenlong Nie, and Min Liu. 2021. "Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China" Water 13, no. 24: 3552. https://doi.org/10.3390/w13243552
APA StyleGeng, X., Zhang, C., Zhang, F., Chen, Z., Nie, Z., & Liu, M. (2021). Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China. Water, 13(24), 3552. https://doi.org/10.3390/w13243552