Comparative Studies on Sorption Recovery and Molecular Selectivity of Bondesil PPL versus Bond Elut PPL Sorbents with Regard to Fulvic Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. TOC Measurements
2.3. SPE Extraction Protocol
2.4. Determination of Sorption and Extraction Efficiencies for DOM Isolation
2.5. UV-Vis Measurements
2.6. NMR Analysis
2.7. FT ICR MS Analysis and Data Treatment
3. Results and Discussion
3.1. Comparison of Sorption Recoveries of the Bond Elut PPL and Bondesil PPL Sorbents
3.2. FT ICR Mass Spectrometry of the Fulvic Acids (Pure and Isolated with Bond Elut PPL and Bondesil PPL Cartridges)
3.3. NMR Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, A.; Spencer, R.G. Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci. Total Environ. 2004, 333, 217–232. [Google Scholar] [CrossRef]
- Meyers-Schulte, K.J.; Hedges, J.I. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nat. Cell Biol. 1986, 321, 61–63. [Google Scholar] [CrossRef]
- Thurman, E.M. Organic Geochemistry of Natural Waters; Springer: Berlin, Germany, 1985. [Google Scholar]
- Hertkorn, N.; Benner, R.; Frommberger, M.; Schmitt-Kopplin, P.; Witt, M.; Kaiser, K.; Kettrup, A.; Hedges, J.I. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 2006, 70, 2990–3010. [Google Scholar] [CrossRef]
- Xenopoulos, M.A.; Barnes, R.T.; Boodoo, K.S.; Butman, D.; Catalán, N.; D’Amario, S.C.; Fasching, C.; Kothawala, D.N.; Pisani, O.; Solomon, C.T.; et al. How humans alter dissolved organic matter composition in freshwater: Relevance for the Earth’s biogeochemistry. Biogeochemistry 2021, 154, 323–348. [Google Scholar] [CrossRef]
- Green, N.; Perdue, E.M.; Aiken, G.R.; Butler, K.D.; Chen, H.; Dittmar, T.; Niggemann, J.; Stubbins, A. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter. Mar. Chem. 2014, 161, 14–19. [Google Scholar] [CrossRef]
- Aiken, G.R.; Thurman, E.M.; Malcolm, R.L.; Walton, H.F. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution. Anal. Chem. 1979, 51, 1799–1803. [Google Scholar] [CrossRef]
- Thurman, E.M.; Malcolm, R.L.; Aiken, G.R. Prediction of capacity factors for aqueous organic solutes adsorbed on a porous acrylic resin. Anal. Chem. 1978, 50, 775–779. [Google Scholar] [CrossRef]
- Daignault, S.; Noot, D.; Williams, D.; Huck, P. A review of the use of XAD resins to concentrate organic compounds in water. Water Res. 1988, 22, 803–813. [Google Scholar] [CrossRef]
- Helms, J.R.; Mao, J.; Chen, H.; Perdue, E.M.; Green, N.W.; Hatcher, P.G.; Mopper, K.; Stubbins, A. Spectroscopic characterization of oceanic dissolved organic matter isolated by reverse osmosis coupled with electrodialysis. Mar. Chem. 2015, 177, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Tfaily, M.; Hodgkins, S.; Podgorski, D.C.; Chanton, J.P.; Cooper, W.T. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 447–457. [Google Scholar] [CrossRef]
- Dittmar, T.; Koch, B.; Hertkorn, N.; Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 2008, 6, 230–235. [Google Scholar] [CrossRef]
- Swenson, M.M.; Oyler, A.R.; Minor, E. Rapid solid phase extraction of dissolved organic matter. Limnol. Oceanogr. Methods 2014, 12, 713–728. [Google Scholar] [CrossRef] [Green Version]
- Zherebker, A.Y.; Perminova, I.V.; Konstantinov, A.I.; Volikov, A.B.; Kostyukevich, Y.I.; Kononikhin, A.S.; Nikolaev, E.N. Extraction of humic substances from fresh waters on solid-phase cartridges and their study by Fourier transform ion cyclotron resonance mass spectrometry. J. Anal. Chem. 2016, 71, 372–378. [Google Scholar] [CrossRef]
- Minor, E.C.; Swenson, M.M.; Mattson, B.M.; Oyler, A.R. Structural characterization of dissolved organic matter: A review of current techniques for isolation and analysis. Environ. Sci. Process. Impacts 2014, 16, 2064–2079. [Google Scholar] [CrossRef]
- Li, Y.; Harir, M.; Lucio, M.; Kanawati, B.; Smirnov, K.; Flerus, R.; Koch, B.; Schmitt-Kopplin, P.; Hertkorn, N. Proposed guidelines for solid phase extraction of Suwannee River dissolved organic matter. Anal. Chem. 2016, 88, 6680–6688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arellano, A.R.; Bianchi, T.S.; Hutchings, J.; Shields, M.R.; Cui, X. Differential effects of solid-phase extraction resins on the measurement of dissolved lignin-phenols and organic matter composition in natural waters. Limnol. Oceanogr. Methods 2018, 16, 22–34. [Google Scholar] [CrossRef]
- Perminova, I.V.; Dubinenkov, I.V.; Kononikhin, A.S.; Konstantinov, A.I.; Zherebker, A.Y.; Andzhushev, M.A.; Lebedev, V.A.; Bulygina, E.; Holmes, R.M.; Kostyukevich, Y.I.; et al. Molecular mapping of sorbent selectivities with respect to isolation of arctic dissolved organic matter as measured by Fourier transform mass spectrometry. Environ. Sci. Technol. 2014, 48, 7461–7468. [Google Scholar] [CrossRef]
- Sleighter, R.L.; Hatcher, P.G. Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar. Chem. 2008, 110, 140–152. [Google Scholar] [CrossRef]
- D’Auria, M.; Emanuele, L.; Racioppi, R. A FT-ICR MS study of Lignin: Determination of an unusual structural repetitive unit in steam exploded lignin from Wheat Straw. Lett. Org. Chem. 2011, 8, 436–446. [Google Scholar] [CrossRef]
- Ning, C.; Gao, Y.; Yu, H.; Zhang, H.; Geng, N.; Cao, R.; Chen, J. FT-ICR mass spectrometry for molecular characterization of water-insoluble organic compounds in winter atmospheric fine particulate matters. J. Environ. Sci. 2022, 111, 51–60. [Google Scholar] [CrossRef]
- Hertkorn, N.; Harir, M.; Koch, B.P.; Michalke, B.; Schmitt-Kopplin, P. High-field NMR spectroscopy and FTICR mass spectrometry: Powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 2013, 10, 1583–1624. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Fu, P.; Volmer, D.A. Analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry: An overview of recent non-petroleum applications. Mass Spectrom. Rev. 2020, 00, 1–15. [Google Scholar] [CrossRef]
- Hertkorn, N.; Ruecker, C.; Meringer, M.; Gugisch, R.; Frommberger, M.; Perdue, E.M.; Witt, M.; Schmitt-Kopplin, P. High-precision frequency measurements: Indispensable tools at the core of the molecular-level analysis of complex systems. Anal. Bioanal. Chem. 2007, 389, 1311–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrien, M.; Lee, Y.K.; Park, J.-E.; Li, P.; Chen, M.; Lee, S.H.; Lee, S.H.; Lee, J.-B.; Hur, J. Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: Comparative study of HS chemical fractions and the origins. Environ. Sci. Pollut. Res. 2017, 24, 16933–16945. [Google Scholar] [CrossRef]
- Simpson, A.J.; Brown, S.A. Purge NMR: Effective and easy solvent suppression. J. Magn. Reson. 2005, 175, 340–346. [Google Scholar] [CrossRef]
- Simpson, A.J.; McNally, D.J.; Simpson, M. NMR spectroscopy in environmental research: From molecular interactions to global processes. Prog. Nucl. Magn. Reson. Spectrosc. 2011, 58, 97–175. [Google Scholar] [CrossRef]
- Hertkorn, N.; Kettrup, A. Molecular level structural analysis of natural organic matter and of humic substances by multinuclear and higher dimensional NMR spectroscopy. In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice; Perminova, I.V., Hatfield, K., Hertkorn, N., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 391–435. [Google Scholar]
- Mopper, K.; Stubbins, A.; Ritchie, J.D.; Bialk, H.M.; Hatcher, P.G. Advanced instrumental approaches for characterization of marine dissolved organic matter: Extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem. Rev. 2007, 107, 419–442. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Kopplin, P.; Gelencsér, A.; Dabek-Zlotorzynska, E.; Kiss, G.; Hertkorn, N.; Harir, M.; Hong, Y.; Gebefügi, I. Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: Organosulfates as photochemical smog constituents. Anal. Chem. 2010, 82, 8017–8026. [Google Scholar] [CrossRef]
- Mueller, C.; Kremb, S.; Gonsior, M.; Brack-Werner, R.; Voolstra, C.R.; Schmitt-Kopplin, P. Advanced identification of global bioactivity hotspots via screening of the metabolic fingerprint of entire ecosystems. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Schmitt-Kopplin, P.; Gabelica, Z.; Gougeon, R.; Fekete, A.; Kanawati, B.; Harir, M.; Gebefuegi, I.; Eckel, G.; Hertkorn, N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA 2010, 107, 2763–2768. [Google Scholar] [CrossRef] [Green Version]
- Kruger, B.R.; Dalzell, B.J.; Minor, E.C. Effect of organic matter source and salinity on dissolved organic matter isolation via ultrafiltration and solid phase extraction. Aquat. Sci. 2011, 73, 405–417. [Google Scholar] [CrossRef]
- Kovalevskii, D.V.; Permin, A.B.; Perminova, I.V.; Petrosyan, V.S. Conditions for acquiring quantitative 13C NMR spectra of humic substances. Mosc. State Univ. Bull. 2000, 41, 39–42. [Google Scholar]
- Hertkorn, N.; Permin, A.; Perminova, I.; Kovalevskii, D.; Yudov, M.; Petrosyan, V.; Kettrup, A. Comparative analysis of partial structures of a peat humic and fulvic acid using one- and two-dimensional nuclear magnetic resonance spectroscopy. J. Environ. Qual. 2002, 31, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Koch, B.P.; Dittmar, T.; Witt, M.; Kattner, G. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Anal. Chem. 2007, 79, 1758–1763. [Google Scholar] [CrossRef] [PubMed]
- Kunenkov, E.V.; Kononikhin, A.S.; Perminova, I.V.; Hertkorn, N.; Gaspar, A.; Schmitt-Kopplin, P.; Popov, I.A.; Garmash, A.V.; Nikolaev, E.N. Total mass difference statistics algorithm: A new approach to identification of high-mass building blocks in electrospray ionization Fourier transform ion cyclotron mass spectrometry data of natural organic matter. Anal. Chem. 2009, 81, 10106–10115. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Simpson, A.J.; Kujawinski, E.B.; Freitas, M.A.; Hatcher, P.G. High resolution electrospray ionization mass spectrometry and 2D solution NMR for the analysis of DOM extracted by C18 solid phase disk. Org. Geochem. 2003, 34, 1325–1335. [Google Scholar] [CrossRef]
- Zherebker, A.; Kim, S.; Schmitt-Kopplin, P.; Spencer, R.G.M.; Lechtenfeld, O.; Podgorski, D.C.; Hertkorn, N.; Harir, M.; Nurfajin, N.; Koch, B.; et al. Interlaboratory comparison of humic substances compositional space as measured by Fourier transform ion cyclotron resonance mass spectrometry (IUPAC Technical Report). Pure Appl. Chem. 2020, 92, 1447–1467. [Google Scholar] [CrossRef]
- Fligner, A.M.; Verducci, J.S.; Blower, E.P. A modification of the Jaccard–Tanimoto Similarity index for diverse selection of chemical compounds using binary strings. Technometrics 2002, 44, 110–119. [Google Scholar] [CrossRef]
- Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 2015, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Perminova, I.V. From green chemistry and nature-like technologies towards ecoadaptive chemistry and technology. Pure Appl. Chem. 2019, 91, 851–864. [Google Scholar] [CrossRef]
- Kujawinski, E.B.; Behn, M.D. Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter. Anal. Chem. 2006, 78, 4363–4373. [Google Scholar] [CrossRef] [PubMed]
- Thurman, E.M.; Mills, M.S. Solid-Phase Extraction: Principles and Practice; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Mosher, J.J.; Klein, G.C.; Marshall, A.G.; Findlay, R.H. Influence of bedrock geology on dissolved organic matter quality in stream water. Org. Geochem. 2010, 41, 1177–1188. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A. The 13C NMR study of the molecular structure of humus acids from podzolic and bog-podzolic soils. Eurasian Soil Sci. 2003, 36, 967–975. [Google Scholar]
- Kholodov, V.A.; Konstantinov, A.I.; Kudryavtsev, A.V.; Perminova, I.V. Structure of humic acids in zonal soils from 13C NMR data. Eurasian Soil Sci. 2011, 44, 976–983. [Google Scholar] [CrossRef]
- Einsiedl, F.; Hertkorn, N.; Wolf, M.; Frommberger, M.; Schmitt-Kopplin, P.; Koch, B.P. Rapid biotic molecular transformation of fulvic acids in a karst aquifer. Geochim. Cosmochim. Acta 2007, 71, 5474–5482. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, P.; Interesse, F.S.; Cassidei, L.; Sciacovelli, O. 1H NMR spectra of humic and fulvic acids and their peracetic oxidation products. Geochim. Cosmochim. Acta 1980, 44, 603–609. [Google Scholar] [CrossRef]
- Machado, W.; Franchini, J.C.; Guimarães, M.D.F.; Filho, J.T. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon 2020, 6, e04078. [Google Scholar] [CrossRef]
- Rodríguez, F.J.; Schlenger, P.; García-Valverde, M. Monitoring changes in the structure and properties of humic substances following ozonation using UV–Vis, FTIR and 1H NMR techniques. Sci. Total Environ. 2016, 541, 623–637. [Google Scholar] [CrossRef]
FA_BE1 | FA_BE2 | FA_BE3 | FA_BS1 | FA_BS2 | FA_BS3 | FA1 | FA2 | |
---|---|---|---|---|---|---|---|---|
Formulae, total | 4749 | 5398 | 4243 | 4308 | 4178 | 4702 | 5280 | 4509 |
CHO, number | 4526 | 5217 | 4178 | 4231 | 4149 | 4475 | 5091 | 4150 |
CHON, number | 223 | 181 | 65 | 77 | 29 | 227 | 189 | 359 |
CHO, % | 95 | 97 | 98 | 98 | 99 | 95 | 96 | 92 |
CHON, % | 5 | 3 | 2 | 2 | 1 | 5 | 4 | 8 |
Mn *, Da | 570 | 609 | 569 | 548 | 518 | 554 | 574 | 560 |
DBEn | 13.0 | 15.0 | 14.5 | 13.1 | 12.6 | 12.4 | 12.3 | 12.3 |
(H/C)n | 1.12 | 1.07 | 1.03 | 1.09 | 1.08 | 1.16 | 1.17 | 1.14 |
(O/C)n | 0.42 | 0.42 | 0.41 | 0.41 | 0.41 | 0.39 | 0.42 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khreptugova, A.N.; Mikhnevich, T.A.; Molodykh, A.A.; Melnikova, S.V.; Konstantinov, A.I.; Rukhovich, G.D.; Volikov, A.B.; Perminova, I.V. Comparative Studies on Sorption Recovery and Molecular Selectivity of Bondesil PPL versus Bond Elut PPL Sorbents with Regard to Fulvic Acids. Water 2021, 13, 3553. https://doi.org/10.3390/w13243553
Khreptugova AN, Mikhnevich TA, Molodykh AA, Melnikova SV, Konstantinov AI, Rukhovich GD, Volikov AB, Perminova IV. Comparative Studies on Sorption Recovery and Molecular Selectivity of Bondesil PPL versus Bond Elut PPL Sorbents with Regard to Fulvic Acids. Water. 2021; 13(24):3553. https://doi.org/10.3390/w13243553
Chicago/Turabian StyleKhreptugova, Anna N., Tatiana A. Mikhnevich, Alexandra A. Molodykh, Sofia V. Melnikova, Andrey I. Konstantinov, Gleb D. Rukhovich, Alexander B. Volikov, and Irina V. Perminova. 2021. "Comparative Studies on Sorption Recovery and Molecular Selectivity of Bondesil PPL versus Bond Elut PPL Sorbents with Regard to Fulvic Acids" Water 13, no. 24: 3553. https://doi.org/10.3390/w13243553
APA StyleKhreptugova, A. N., Mikhnevich, T. A., Molodykh, A. A., Melnikova, S. V., Konstantinov, A. I., Rukhovich, G. D., Volikov, A. B., & Perminova, I. V. (2021). Comparative Studies on Sorption Recovery and Molecular Selectivity of Bondesil PPL versus Bond Elut PPL Sorbents with Regard to Fulvic Acids. Water, 13(24), 3553. https://doi.org/10.3390/w13243553