Impacts of Rainfall and Temperature Changes on Smallholder Agriculture in the Limpopo Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Areas
2.2. Data Sources
2.3. Rainfall and Temperature Trends Analysis
2.4. Calculation of the Area-Weighted Average Rainfall
2.5. Evaluation of the Climatic Moisture Index (CMI)
2.6. Statistical Tests
3. Results and Discussion
3.1. Rainfall Patterns
3.2. Temperature
3.3. Degree of Aridity and Water Scarcity
3.4. Correlation between Rainfall Variability, Aridity and Cereal Production
4. Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Nhamo, L.; Mathcaya, G.; Mabhaudhi, T.; Nhlengethwa, S.; Nhemachena, C.; Mpandeli, S. Cereal Production Trends under Climate Change: Impacts and Adaptation Strategies in Southern Africa. Agriculture 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- BFAP (Bureau for Food and Agricultural Policy). Policy Brief on the 2015/2016 Drought; BFAP: Pretoria, South Africa, 2016; pp. 1–44. [Google Scholar]
- Cogato, A.; Meggio, F.; Migliorati, M.D.A.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef] [Green Version]
- Van Koppen, B.; Nhamo, L.; Cai, X.; Gabriel, M.J.; Sekgala, M.; Shikwambana, S.; Tshikolomo, K.; Nevhutanda, S.; Matlala, B.; Manyama, D. Smallholder Irrigation Schemes in the Limpopo Province, South Africa; International Water Management Institute: Gujarat, India, 2017. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). World Agriculture: Towards 2015/2030. An FAO Perspective. Food and Agriculture Organization of the United Nations: Rome, Italy; Earthscan: London, UK, 2003. [Google Scholar]
- Brown, M.E.; Funk, C.C. Food security under climate change. Science 2008, 319, 580–581. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Philos. Trans. R. Soc. Biol. Sci. 2010, 365, 2769–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Clements, R.; Haggar, J.; Quezada, A.; Torres, J. Technologies for Climate Change Adaptation—Agriculture Sector; Zhu, X., Ed.; UNEP Risø Centre: Roskilde, Denmark, 2011. [Google Scholar]
- UNECA (United Nations Economic Commission for Africa). Global Environmental Outlook 2000 (GEO); UNEP: Addis Ababa, Ethiopia; Earthscan: London, UK, 2002. [Google Scholar]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang. 2020, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Camill, P. Global Change. Nat. Educ. Knowl. 2010, 3, 49. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- Davis, C.; Archer, E.; Engelbreht, F.; Landman, W.; Stevens, N.; Sinden, L.A.; Nkambule, C.; Maserumule, R.; van der Merwe, M. A Climate Change Handbook for North-Eastern South Africa; Council for Scientific and Industrial Research (CSIR): Pretoria, South Africa, 2010; Available online: www.sarva.org.za/k2c (accessed on 20 September 2020).
- Turral, H.; Burke, J.; Faurés, J. Climate Change, Water and Food Security. FAO Water Report 36; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [Green Version]
- Parry, M.; Arnell, N.; McMichael, T.; Nicholls, R.; Martens, P.; Kovats, S.; Livermore, M.; Rosenzweig, C.; Iglesias, A.; Fischer, G. Millions at risk: Defining critical climate change threats and targets. Glob. Environ. Chang. 2001, 11, 181–183. [Google Scholar] [CrossRef]
- Petrie, B.; Chapman, A.; Midgley, A.; Parker, A.; Risk, R. Vulnerability and Resilience in the Limpopo River Basin System: Climate Change, Water and Biodiversity—A Synthesis. For the USAID Southern Africa “Resilience in the Limpopo River Basin” (RESILIM) Program; One World Sustainable Investments: Cape Town, South Africa, 2015. [Google Scholar]
- LDA (Limpopo Department of Agriculture). Department of Agriculture Strategic Plan 2005–2010; Limpopo Provincial Government: Polokwane, South Africa, 2005.
- IDP (Integrated Development Plan of the Limpopo Department of Agriculture). Unpublished Data Base of Limpopo Department of Agriculture; Limpopo Provincial Government: Polokwane, South Africa, 2012.
- DFED (Department of Finance and Economic Development). Limpopo State of the Environment Report (Phase 1). Unpublished Report of the Limpopo Department of Finance and Economic Development; Limpopo Provincial Government: Polokwane, South Africa, 2004.
- Watts, L.; Calver, A. Effects of Spatially-Distributed Rainfall on Runoff for a Conceptual Catchment. Hydrol. Res. 1991, 22, 1–14. [Google Scholar] [CrossRef]
- Childs, C. Interpolation surfaces in ArcGIS spatial analyst. ArcUser 2004, 3235, 32–35. [Google Scholar]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Chen, F.-W.; Liu, C.-W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Perry, M.; Hollis, D. The development of a new set of long-term climate averages for the UK. Int. J. Clim. 2005, 25, 1023–1039. [Google Scholar] [CrossRef]
- Garcia, M.; Peters-Lidard, C.D.; Goodrich, D.C. Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the South Western United States. Water Resour. Res. 2008, 44, 14. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Feddema, J.J. A More Rational Climatic Moisture Index. Prof. Geogr. 1992, 44, 84–88. [Google Scholar] [CrossRef]
- Holloway, A. Drought Emergency, Yes... Drought Disaster, No: Southern Africa 1991–1993. Camb. Rev. Int. Aff. 2000, 14, 254–276. [Google Scholar] [CrossRef]
- Rouault, M.; Richard, Y. Intensity and spatial extension of drought at different time scales since 1921 in South Africa. WaterSA 2003, 29, 489–500. [Google Scholar]
- Davis, C. Climate Risk and Vulnerability: A Handbook for Southern Africa; Council for Scientific and Industrial Research (CSIR): Pretoria, South Africa, 2011. [Google Scholar]
- Kruger, A.C.; Shongwe, S. Temperature trends in South Africa: 1960–2003. Int. J. Clim. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). Irrigation in Africa in Figures: AQUASTAT Survey. FAOWater Reports 29; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2005. [Google Scholar]
- Vörösmarty, C.J.; Douglas, E.M.; Green, P.A.; Revenga, C. Geospatial Indicators of Emerging Water Stress: An Application to Africa. Ambio 2005, 34, 230–236. [Google Scholar] [CrossRef]
- Khalili, N.; Davari, K.; Ansari, H.; Alizadeh, A. The management of supplementary irrigation for rainfed wheat during the drought periods using crop moisture index (the case study: Bojnurd). J. Water Soil (Agric. Sci. Technol.) 2011, 24, 1254–1264. [Google Scholar]
- Mpandeli, S.; Nhamo, L.; Moeletsi, M.; Masupha, T.; Magidi, J.; Tshikolomo, K.; Liphadzi, S.; Naidoo, D.; Mabhaudhi, T. Assessing climate change and adaptive capacity at local scale using observed and remotely sensed data. Weather. Clim. Extremes 2019, 26, 100240. [Google Scholar] [CrossRef]
Station | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grenshoek (Sape) | 1294.0 | 1313.3 | 831.8 | 1479.5 | 1659.1 | 1339.6 | 989.7 | 1413.6 | 2420.0 | 722.3 | 769.4 | 489.5 | 545.0 |
Phalaborwa—AER | 663.9 | 323.3 | 303.1 | 836.6 | 847.9 | 765.3 | 550.4 | 641.5 | 845.0 | 386.1 | 744.1 | 279.7 | 280.6 |
Giyani-Amfarm | 645.3 | 453.0 | 305.3 | 724.3 | 981.6 | 767.4 | 488.0 | 423.3 | 1156.0 | 614.8 | 563.4 | 272.3 | 393.4 |
Letaba | 704.8 | 242.9 | 179.3 | 429.6 | 683.6 | 426.1 | 581.3 | 354.1 | 901.4 | 364.5 | 585.1 | 293.1 | 459.7 |
Mopani | 763.7 | 353.8 | 264.4 | 813.4 | 796.6 | 950.8 | 442.8 | 491.5 | 1504.8 | 555.5 | 801.1 | 386.7 | 350.5 |
Bavaria Fruit Estates | 1173.3 | 749.7 | 491.2 | 873.3 | 833.4 | 1339.6 | 702.4 | 616.9 | 1007.0 | 337.9 | 635.6 | 755.4 | 868.2 |
Mopani: Sekgosese | 688.2 | 375.2 | 430.6 | 724.5 | 961.2 | 752.8 | 600.7 | 629.7 | 2044.9 | 641.9 | 781.6 | 407.7 | 588.8 |
Thohoyandou | 1198.2 | 812.8 | 635.2 | 939.4 | 921.0 | 975.8 | 902.4 | 1191.3 | 170.3 | 802.5 | 1327.0 | 715.6 | 1026.0 |
Messina Proefplaas | 302.4 | 204.6 | 352.5 | 538.3 | 473.1 | 499.4 | 353.8 | 248.5 | 1010.6 | 361.5 | 669.2 | 322.0 | 386.6 |
Levubu (S) | 1233.3 | 728.5 | 547.7 | 1436.9 | 1327.9 | 1181.3 | 790.8 | 1100.4 | 2381.2 | 843.6 | 1331.2 | 670.4 | 934.6 |
Venda: Tshiombo | 858.2 | 552.3 | 524.4 | 1208.2 | 1014.0 | 1183.6 | 760.9 | 1135.0 | 2996.8 | 845.1 | 1501.0 | 578.8 | 517.1 |
Venda: Lwamondo | 1160.7 | 847.4 | 488.3 | 1408.1 | 1132.7 | 1258.3 | 874.6 | 1129.1 | 2607.1 | 704.2 | 1309.5 | 552.5 | 708.5 |
Mean | 890.5 | 579.7 | 446.2 | 951.0 | 969.3 | 953.3 | 669.8 | 781.2 | 1587.1 | 598.3 | 918.2 | 477.0 | 588.2 |
SEM | 90.4 | 93.1 | 52.1 | 102.0 | 88.2 | 90.9 | 57.3 | 112.3 | 253.0 | 56.2 | 99.0 | 50.7 | 70.6 |
N = 944 | R2 = 0.0003 | |||||
---|---|---|---|---|---|---|
b * | Std. Err. of b * | b | Std. Err. of b | t(942) | p-Value | |
Intercept | 1555.82 | 1619.28 | 0.96 | 0.337 | ||
Time | −0.017 | 0.033 | −0.42 | 0.81 | −0.52 | 0.604 |
Scheme 1960. | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grenshoek (Sape) | 12.5 | 15.1 | 15.0 | 15.9 | 13.8 | 16.0 | 18.6 | 17.7 | 14.9 | 17.1 | 17.1 | 17.2 | 17.6 |
Phalaborwa—AER | 13.8 | 11.9 | 13.9 | 12.5 | 16.3 | 12.5 | 13.2 | 13.0 | 15.5 | 13.1 | 13.4 | 13.3 | 13.5 |
Giyani—Amfarm | 13.5 | 14.7 | 15.3 | 15.2 | 15.1 | 16.0 | 15.1 | 15.0 | 14.2 | 15.9 | 14.2 | 15.0 | 14.9 |
Letaba | 14.2 | 15.7 | 16.2 | 15.0 | 15.3 | 17.0 | 16.9 | 16.3 | 15.9 | 15.8 | 15.9 | 15.8 | 16.2 |
Mopani | 14.1 | 15.4 | 16.2 | 15.1 | 15.1 | 16.1 | 16.5 | 16.1 | 15.7 | 16.1 | 15.6 | 15.6 | 15.8 |
Bavaria Fruit Estates | 13.3 | 12.5 | 13.9 | 13.7 | 13.9 | 14.1 | 15.3 | 16.0 | 15.5 | 15.4 | 15.2 | 14.5 | 14.9 |
Mopani: Sekgosese | 13.0 | 14.3 | 14.6 | 14.3 | 14.6 | 14.2 | 14.6 | 13.9 | 14.3 | 15.5 | 16.3 | 18.2 | 20.6 |
Thohoyandou | 14.0 | 15.2 | 15.9 | 15.2 | 15.8 | 15.5 | 15.3 | 15.9 | 15.1 | 16.2 | 16.9 | 17.1 | 16.9 |
Messina Proefplaas | 15.1 | 15.0 | 15.4 | 14.8 | 15.0 | 15.7 | 15.4 | 15.9 | 16.0 | 16.2 | 15.6 | 15.7 | 15.7 |
Levubu (S) | 13.7 | 17.5 | 18.1 | 17.2 | 14.9 | 18.1 | 18.2 | 18.3 | 14.4 | 18.9 | 18.0 | 17.8 | 17.4 |
Venda: Tshiombo | 14.1 | 17.9 | 18.7 | 18.0 | 16.0 | 17.8 | 17.9 | 18.1 | 14.7 | 18.6 | 17.9 | 18.3 | 17.8 |
Venda: Lwamondo | 13.8 | 14.9 | 15.4 | 14.6 | 15.0 | 15.5 | 15.2 | 16.0 | 15.6 | 16.3 | 14.7 | 14.7 | |
Mean | 13.7 | 15.0 | 15.7 | 15.1 | 15.1 | 15.7 | 16.0 | 16.0 | 15.2 | 16.3 | 15.9 | 16.1 | 16.3 |
SEM | 0.2 | 0.5 | 0.4 | 0.4 | 0.2 | 0.5 | 0.5 | 0.5 | 0.2 | 0.4 | 0.4 | 0.5 | 0.6 |
N = 944 | R2 = 0.005 | |||||
---|---|---|---|---|---|---|
b * | Std. Err. of b* | b | Std. Err. of b | t(942) | p-Value | |
Intercept | 0.33 | 6.77 | 0.05 | 0.957 | ||
Time | 0.07 | 0.033 | 0.01 | 0.003 | 2.14 | 0.032 |
Station | 1960 | 1965 | 1970 | 1975 | 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grenshoek (Sape) | 26.7 | 27.0 | 27.6 | 26.4 | 26.1 | 26.0 | 25.3 | 25.4 | 24.5 | 27.3 | 28.5 | 27.5 | 28.1 |
Phalaborwa—AER | 27.6 | 29.8 | 29.6 | 28.0 | 27.7 | 29.4 | 29.1 | 29.2 | 28.6 | 29.7 | 30.8 | 31.7 | 30.2 |
Giyani—Amfarm | 27.4 | 27.2 | 28.4 | 27.6 | 27.6 | 28.4 | 26.9 | 28.5 | 27.8 | 27.9 | 27.3 | 29.8 | 29.7 |
Letaba | 28.5 | 30.8 | 31.3 | 27.9 | 27.4 | 30.6 | 30.6 | 29.7 | 28.8 | 29.3 | 30.0 | 31.4 | 30.1 |
Mopani | 28.1 | 30.1 | 30.8 | 27.4 | 27.1 | 29.8 | 30.3 | 29.7 | 29.0 | 29.3 | 29.4 | 31.1 | 30.1 |
Bavaria Fruit Estates | 26.1 | 26.4 | 27.4 | 26.5 | 27.1 | 27.8 | 28.0 | 28.5 | 27.6 | 29.7 | 28.9 | 28.8 | 27.6 |
Mopani: Sekgosese | 27.0 | 26.9 | 27.8 | 26.2 | 26.3 | 26.4 | 26.5 | 26.3 | 24.7 | 27.0 | 30.4 | 34.8 | 38.2 |
Thohoyandou | 27.4 | 26.6 | 27.7 | 25.8 | 26.1 | 26.9 | 27.5 | 27.3 | 24.9 | 28.4 | 26.9 | 28.7 | 29.3 |
Messina Proefplaas | 29.6 | 29.8 | 30.7 | 29.4 | 29.7 | 29.5 | 30.1 | 30.2 | 28.6 | 29.5 | 29.4 | 33.6 | 32.8 |
Levubu (S) | 27.3 | 26.8 | 27.9 | 25.9 | 25.9 | 26.2 | 26.4 | 26.5 | 25.1 | 27.7 | 27.5 | 29.2 | 28.2 |
Venda: Tshiombo | 27.5 | 26.6 | 27.7 | 25.8 | 26.1 | 26.7 | 27.2 | 27.3 | 26.5 | 27.8 | 27.4 | 28.3 | 28.5 |
Venda: Lwamondo | 27.4 | 26.8 | 27.9 | 25.9 | 26.0 | 26.2 | 26.7 | 27.0 | 25.6 | 28.1 | 28.8 | 30.2 | 28.7 |
Mean | 27.6 | 27.9 | 28.7 | 26.9 | 26.9 | 27.8 | 27.9 | 28.0 | 26.8 | 28.5 | 28.8 | 30.4 | 30.1 |
SEM | 0.3 | 0.5 | 0.4 | 0.3 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.4 | 0.6 | 0.8 |
N = 944 | R2 = 0.066 | |||||
---|---|---|---|---|---|---|
b * | Std. Err. of b * | b | Std. Err. of b | t(942) | p-Value | |
Intercept | −22.97 | 6.21 | −3.70 | 0.0002 | ||
Time | 0.268 | 0.03 | 0.03 | 0.003 | 8.18 | <0.0001 |
Station | 1960 | 1970 | 1980 | 1990 | 2000 | 2010 | 2018 |
---|---|---|---|---|---|---|---|
Grenshoek (Sape) | −0.2 | −0.5 | 0.1 | −0.3 | 0.8 | −0.5 | −0.7 |
Phalaborwa-AER | −0.6 | −0.8 | −0.4 | −0.7 | −0.5 | −0.6 | −0.8 |
Amfarm | −0.7 | −0.9 | −0.6 | −0.8 | −0.5 | −0.8 | −0.8 |
Letaba | −0.7 | −0.9 | −0.7 | −0.8 | −0.6 | −0.8 | −0.8 |
Mopani | −0.7 | −0.9 | −0.6 | −0.8 | −0.4 | −0.7 | −0.9 |
Bavaria Fruit Estates | −0.5 | −0.8 | −0.6 | −0.7 | −0.5 | −0.7 | −0.1 |
Sekgosese | −0.7 | −0.8 | −0.5 | −0.7 | 0.0 | −0.7 | −0.8 |
Thohoyandou | −0.3 | −0.6 | −0.4 | −0.4 | −0.9 | −0.1 | −0.4 |
Messina Proefplaas | −0.8 | −0.8 | −0.7 | −0.8 | −0.4 | −0.6 | −0.8 |
L.Trichard: Levubu (S) | −0.5 | −0.8 | −0.4 | −0.6 | 0.2 | −0.4 | −0.6 |
Venda: Tshiombo | −0.6 | −0.8 | −0.5 | −0.6 | 0.4 | −0.3 | −0.8 |
Venda: Lwamondo | −0.5 | −0.8 | −0.4 | −0.6 | 0.3 | −0.5 | −0.7 |
Zebediela | −0.6 | −0.8 | −0.4 | −0.6 | −0.5 | −0.6 | −0.8 |
Makhado: All Days | −0.7 | −0.8 | −0.6 | −0.9 | −0.5 | −0.8 | −0.9 |
Polokwane: mmondale | −0.8 | −0.8 | −0.6 | −0.7 | −0.5 | −0.7 | −0.8 |
AL3 Boerdery | −0.8 | −0.9 | −0.6 | −0.7 | −0.6 | −0.7 | −0.8 |
Average | −0.6 | −0.8 | −0.5 | −0.7 | −0.3 | −0.6 | −0.7 |
N = 944 | R2 = 0.001 | |||||
---|---|---|---|---|---|---|
b * | Std. Err. of b * | b | Std. Err. of b | t(942) | p-Value | |
Intercept | −1.69 | 1.14 | −1.48 | 0.138 | ||
Time | 0.031 | 0.033 | 0.001 | 0.001 | 0.95 | 0.340 |
Climate Change Impact | Recommended Adaptation Strategy |
---|---|
Shortened rain season (Starting around December and ending in March) |
|
Intra-seasonal dry spells during the cropping season |
|
Increasing temperatures and heatwaves |
|
Increased frequency and intensity of droughts |
|
Intra and inter-seasonal rainfall variability |
|
Increased risk of flooding-(flash floods/cyclones) from January to March |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikwambana, S.; Malaza, N.; Shale, K. Impacts of Rainfall and Temperature Changes on Smallholder Agriculture in the Limpopo Province, South Africa. Water 2021, 13, 2872. https://doi.org/10.3390/w13202872
Shikwambana S, Malaza N, Shale K. Impacts of Rainfall and Temperature Changes on Smallholder Agriculture in the Limpopo Province, South Africa. Water. 2021; 13(20):2872. https://doi.org/10.3390/w13202872
Chicago/Turabian StyleShikwambana, Sydney, Ntokozo Malaza, and Karabo Shale. 2021. "Impacts of Rainfall and Temperature Changes on Smallholder Agriculture in the Limpopo Province, South Africa" Water 13, no. 20: 2872. https://doi.org/10.3390/w13202872
APA StyleShikwambana, S., Malaza, N., & Shale, K. (2021). Impacts of Rainfall and Temperature Changes on Smallholder Agriculture in the Limpopo Province, South Africa. Water, 13(20), 2872. https://doi.org/10.3390/w13202872