Tracking the Origin and Evolution of Diagenetic Fluids of Upper Jurassic Carbonate Rocks in the Zagros Thrust Fold Belt, NE-Iraq
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Field Observation
4.2. Petrography
4.3. Oxygen, Carbon and In Situ Strontium Isotopes
5. Interpretation and Discussion of Conventional and Non-Conventional Isotopic Signature Trends
5.1. δ13CVPDB-δ18OVPDB Isotopes
5.2. Sources of Variation of Absolute Strontium Isotopes from the Late Jurassic and Onwards, Utilizing Non-Conventional Laser Ablation ICP-MS
5.3. Origin of δ13CVPDB δ18OVPDB-Light and 87Sr/86Sr-Rich Sediments
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fox, J.; Ahlbrandt, E.; Thomas, S. Petroleum Geology and Total Petroleum Systems of the Widyan Basin and Interior Platform of Saudi Arabia and Iraq; Bulletin 2202-E; U.S. Geological Survey: Reston, VA, USA, 2002; Volume 26. [CrossRef]
- Bellen, R.C.V.; Dunnington, H.V.; Wetzel, R.; Morton, D. Lexique Stratigraphic International: Fascicule 10a, Asie, Iraq. In Mesozoic and Palaeozoic; van Bellen, R.C., Ed.; Centre National de la Recherche Scientifique: Paris, France, 1959; Volume 3. [Google Scholar]
- Maliva, R.G.; Siever, R. Nodular Chert Formation in Carbonate Rocks. J. Geol. 1989, 97, 421–433. [Google Scholar] [CrossRef]
- Gao, G.; Land, L. Nodular chert from the Arbuckle Group, Slick Hills, SW Oklahoma: A combined field, petrographic and isotopic study. Sedimentology 1991, 38, 857–870. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Préat, A. Geochemical and Dynamic Model of Repeated Hydrothermal Injections in Two Mesozoic Successions, Provençal Domain, Maritime Alps, SE-France. Minerals 2020, 10, 775. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Smith, C.L.; Baker, A.; Fuller, L.; Spötl, C.; Mattey, D.; McDermott, F. Modification and preservation of environmental signals in speleothems. Earth Sci. Rev. 2006, 75, 105–153. [Google Scholar] [CrossRef] [Green Version]
- Tullborg, E.L.; Drake, H.; Sandstrom, B. Palaeohydrogeology: A methodology based on fracture mineral studies. Appl. Geochem. 2008, 23, 1881–1897. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Kolo, K.; Préat, A. Hydrothermal Carbonate Mineralization, Calcretization, and Microbial Diagenesis Associated with Multiple Sedimentary Phases in the Upper Cretaceous Bekhme Formation, Kurdistan Region-Iraq. Geosciences 2019, 9, 459. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.; Jenkyns, C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci. 2001, 301, 112–149. [Google Scholar] [CrossRef] [Green Version]
- Mountjoy, E.W.; Machel, H.G.; Green, D.; Duggan, J.; Williams-Jones, A.E. Devonian matrix dolomites and deep burial carbonate cements: A comparison between the Rimbey-Meadowbrook reef trend and the deep basin of west-central Alberta. Bull. Can. Petrol. Geol. 1999, 47, 487–509. [Google Scholar]
- Jones, C.E.; Jenkyns, H.C.; Coe, A.L.; Hesselbo, S.P. Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochim. Cosmochim. Acta 1994, 58, 3061–3074. [Google Scholar] [CrossRef]
- Jassim, S.Z.; Goff, J.C. Geology of Iraq; Dolin, Prague and Moravian Museum: Brno, Czech Republic, 2006; 341p. [Google Scholar]
- Buday, T. The Regional Geology of Iraq. In Stratigraphy and Paleogeography; Kassab, I.I., Jassim, S.Z., Eds.; GEOSURV: Baghdad, Iraq, 1980; Volume 1, 445p. [Google Scholar]
- Rankenburg, K.; Lassiter, J.C.; Brey, G. Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain—Constraints on magma genesis and crustal contamination. Contrib. Mineral. Petrol. 2004, 147, 129–144. [Google Scholar] [CrossRef]
- Mamet, B.; Préat, A. Jurassic microfacies, Rosso Ammonitico limestone, Subbetic Cordillera, Spain. Rev. Esp. Micropaleontol. 2006, 38, 219–228. [Google Scholar]
- Brand, U. Aragonite-calcite transformation based on Pennsylvanian molluscs. Geol. Soc. Am. Bull. 1989, 101, 377–390. [Google Scholar] [CrossRef]
- Anderson, T.F.; Popp, B.N.; Williams, A.C.; Ho, L.-Z.; Hudson, J.D. The stable isotopic record of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: Paleoenvironmental implications. J. Geol. Soc. Lond. 1994, 151, 125–138. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Jenkyns, H.C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J.S. Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim. Past 2012, 8, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Price, G.D.; Sellwood, B.W. Paleotemperature indicated by upper Jurassic (Kimmeridgian Tithonian) fossils from Mallorca determined by oxygen-isotope composition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 110, 1–10. [Google Scholar] [CrossRef]
- Madhavaraju, J.; Sial, A.N.; González-León, C.M.; Nagarajan, R. Carbon and oxygen isotopic variations in early Albian limestone facies of the Mural Formation, Pitaycachi section, northeastern Sonora, Mexico. Rev. Mex. Cienc. Geológi. 2013, 30, 526–539. [Google Scholar]
- Tanner, L.H. Continental Carbonates as Indicators of Paleoclimate. In Carbonates in Continental Settings: Geochemistry, Diagenesis and Applications; Developments in Sedimentology Series, Alonso-Zarza, A.M., Tanner, L.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 62, pp. 179–214. [Google Scholar] [CrossRef]
- Grocke, D.R.; Hori, R.S.; Arthur, M.A. The global significance of a deep-sea isotopic event during the Toarcian oceanic anoxic event recorded in Japan. Am. Geophys. Union 2003, 84, 905. [Google Scholar]
- Li, M.; Fang, X.; Li, J.; Yan, M.; Sun, S.; Zhu, L. Isotopic Application in High Saline Conditions. In Isotopes Applications in Earth Sciences; Abdel Rahman, R.O., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 3. [Google Scholar] [CrossRef] [Green Version]
- Magaritz, M.; Stemmerik, L. Oscillation of carbon and oxygen isotope compositions of carbonate rocks between evaporative and open marine environments, Upper Permian of East Greenland. Earth Planet. Sci. Lett. 1989, 93, 233–240. [Google Scholar] [CrossRef]
- Warfe, D.; Pettit, N.; Davies, P.; Pusey, B.; Hamilton, S.; Kennard, M.; Townsend, S.; Bayliss, P.; Ward, D.; Douglas, M. The ‘wet–dry’ in the wet–dry tropics drives river ecosystem structure and processes in northern Australia. Fresh Water Biol. 2011, 56, 2169–2195. [Google Scholar] [CrossRef]
- Lécuyer, C.; Allemand, P. Modelling of oxygen isotope evolution of seawater: Implications for the climate interpretation of the δ18O of marine sediments. Geochim. Cosmochim. Acta 1999, 63, 351–361. [Google Scholar] [CrossRef]
- Vickers, L.M.; Bajnai, D.; Price, G.D.; Linckens, J.; Fiebig, J. Southern high-latitude warmth during the Jurassic–Cretaceous: New evidence from clumped isotope thermometry. Geology 2019, 47, 724–728. [Google Scholar] [CrossRef]
- Padden, M.; Weissert, H.; Funk, H.; Schneider, S.; Gansner, C. Late Jurassic lithological evolution and carbon isotope stratigraphy of the Western Tethys. Eclogae Geol. Helv. 2002, 95, 333–346. [Google Scholar]
- Deocampo, M. The Geochemistry of Continental Carbonates. In Carbonates in Continental Settings: Geochemistry, Diagenesis and Applications; Developments in Sedimentology Series, Alonso-Zarza, A.M., Tanner, L.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 62, pp. 1–59. [Google Scholar]
- Zheng, Y.F.; Hoefs, J. Carbon and oxygen covariations in hydrothermal calcites: Theoretical modelling on mixing processes and application to Pb-Zn deposits in the Harz Mountains. Miner. Depos. 1993, 28, 79–89. [Google Scholar] [CrossRef]
- Moore, H. Carbonate Diagenesis and Porosity. Dev. Sedimentol. 1989, 46, 338. [Google Scholar]
- Salih, N.; Mansurbeg, H.; Kolo, K.; Gerdes, A.; Préat, A. In situ U-Pb dating of hydrothermal diagenesis in tectonically controlled fracturing in the Upper Cretaceous Bekhme Formation, Kurdistan Region-Iraq. Int. Geol. Rev. 2020, 62, 2261–2279. [Google Scholar] [CrossRef]
- Bustillo, M.A. Silicification of Continental Carbonates. In Carbonates in Continental Settings: Processes, Facies and Applications; Developments in Sedimentology Series, Alonso-Zarza, A.M., Tanner, L.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 62, pp. 153–174. [Google Scholar]
- Bustillo, M.A.; Pérez-Jiménez, J.L.; Alonso-Zarza, A.M.; Furio, M. Moganite in the chalcedony varieties of continental cherts (Miocene, Madrid basin, Spain). Spectrosc. Lett. 2012, 45, 109–113. [Google Scholar] [CrossRef]
- McArthur, M.; Howarth, J.; Shields, A. Strontium Isotope Stratigraphy. In The Geologic Time Scale; Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G.M., Eds.; Elsevier: Boston, MA, USA, 2012; Volume 2, pp. 127–144. [Google Scholar]
- Korte, C.; Kozur, W.; Bruckschen, P.; Veizer, J. Strontium isotope evolution of Late Permian and Triassic seawater. Geochim. Cosmochim. Acta 2003, 67, 47–62. [Google Scholar] [CrossRef]
- Cantarero, I.; Parcerisa, D.; Plata, M.A.; Gómez-Gras, D.; Gomez-Rivas, E.; Martín-Martín, J.D.; Travé, A. Fracturing and Near-Surface Diagenesis of a Silicified Miocene Deltaic Sequence: The Montjuïc Hill (Barcelona). Minerals 2020, 10, 135. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Ye, H.; Ma, H.; Lang, X.; Pei, H.; Zhou, C.; Zhang, S.; Yang, R. Hydrothermal origin of sydepositional chert bands and nodules in the Mesoproterozoic Wumishan Formation: Implication for the evolution of Mesoproterozoic cratonic basin, North China. Precambrian Res. 2018, 310, 213–228. [Google Scholar] [CrossRef]
- Wen, H.; Fan, H.; Tian, S.; Wang, Q.; Hu, R. The formation conditions of the early Ediacaran cherts, South China. Chem. Geol. 2016, 430, 45–69. [Google Scholar] [CrossRef]
- Palmer, M.R.; Edmond, J.M. Controls over the strontium isotope composition of river water. Geochim. Cosmochim. Acta 1992, 56, 2099–2111. [Google Scholar] [CrossRef]
- Wierzbowski, H.; Anczkiewicz, R.; Pawlak, J.; Rogov, M.A.; Kuznetsov, A.B. Revised Middle—Upper Jurassic Strontium Isotope Stratigraphy. Chem. Geol. 2017, 466, 239–255. [Google Scholar] [CrossRef]
- Mohajjel, M.; Fergusson, C.L. Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. Int. Geol. Rev. 2014, 56, 263–287. [Google Scholar] [CrossRef]
- Lechmann, A.; Burg, J.-P.; Ulmer, P.; Guillong, M.; Faridi, M. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence. Lithos 2018, 304–307, 311–328. [Google Scholar] [CrossRef]
- Davies, G.R.; Smith, L.B. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Hodell, D.A.; Mead, G.A.; Mueller, P.A. Variation in the strontium isotopic composition of seawater (8 Ma to present): Implications for chemical weathering rates and dissolved fluxes to the oceans. Chem. Geol. 1990, 80, 291–307. [Google Scholar] [CrossRef]
- Matyszkiewicz, J. Thz significance of Saccocoma-calciturbidites for the analysis of the Polish Epicontinetal Late Jurassic Basin: An example from the Southern Cracow-Wielun Upland (Poland). Facies 1996, 34, 23–40. [Google Scholar] [CrossRef]
- Breesch, L.; Swennen, R.; Vincent, B.; Ellison, R.; Dewever, B. Dolomite cementation and recrystallisation of sedimentary breccias along the Musandam Platform margin (United Arab Emirates). J. Geochem. Explor. 2010, 106, 34–43. [Google Scholar] [CrossRef]
- Burke, W.H.; Denison, R.E.; Heatherington, E.A.; Koepnick, R.B.; Nelson, H.F.; Otto, J.B. Variation of seawater 87Sr/86Sr through Phanerozoic time. Geology 1982, 10, 516–519. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Chen, J.F. Stable Isotope Geochemistry; Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Haq, B.U. Jurassic sea-level variations: A reappraisal. GSA Today 2018, 28, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Wendte, J.; Dravies, J.; Stasiuk, D.; Qing, H.; Moore, O.; Ward, G. High temperature saline (thermoflux) dolomitization of Devonian Swan Hills platfoand bank carbonates, Wild River area, west-central Alberta. Bull. Can. Pet. Geol. 1998, 46, 210–265. [Google Scholar]
- Spencer, J.; Jeary, V.; Moore, O. Sedimentary Exhalative Dolomite from the Middle Cambrian Eldon and Cathedral Formations of the Canadian Rocky Mountains. In Dolomites—The Spectrum: Mechanisms, Models, Reservoir Development; Extended Abstracts, McAuley, R., Eds.; Canadian Society of Petroleum Geologists, Seminar and Core Conference: Calgary, AB, Canada, 2004; pp. 13–15. [Google Scholar]
- Derry, L.; Keto, L.S.; Jacobsen, S.B.; Knoll, A.H.; Swett, K. Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochim. Cosmochim. Acta 1989, 53, 2331–2339. [Google Scholar] [CrossRef]
Sample No. | δ13CVPDB | δ18OVPDB |
---|---|---|
B.4 | −9.3 | −0.8 |
B.15 | −7.5 | −2.9 |
B.19 | −5.6 | −5.9 |
B.5 | −9.6 | −3.5 |
B.3 | −8.1 | −1.3 |
B.11 | −8.2 | −3.8 |
B.11 | −8.4 | −3.9 |
B.12 | −7.0 | −1.4 |
B.8 | −10.7 | −4.3 |
B.0 | −8.7 | −0.3 |
B.0 | −5.1 | −12.5 |
B.6 | −4.9 | −12.9 |
B.6 | −11.7 | −5.1 |
B.22 | −8.2 | −1.2 |
B.B | −8.6 | −9.6 |
B.9 | −2.5 | −11.3 |
B.20 | −6.3 | −1.7 |
B.21 | −5.2 | −2.3 |
B.14 | −7.5 | −0.8 |
B.14 | −6.2 | −6.4 |
B-Contact | −10.1 | −4.1 |
B.16 | −7.1 | −2.3 |
B.1 | 1.5 | −7.5 |
B.10 | −11.0 | −4.9 |
Sample No. | Line No. | Sr ppm | 87Sr/86Sr |
---|---|---|---|
B9 | 109.00 | 148 | 0.70767 |
B9 | 110.00 | 160 | 0.70772 |
B9 | 111.00 | 191 | 0.70767 |
B9 | 112.00 | 690 | 0.70750 |
B9 | 113.00 | 496 | 0.70744 |
B9 | 114.00 | 154 | 0.70768 |
B9 | 115.00 | 594 | 0.70743 |
B9 | 116.00 | 578 | 0.70745 |
B9 | 117.00 | 1029 | 0.70746 |
B9 | 118.00 | 528 | 0.70739 |
B9 | 119.00 | 208.51 | 0.70789 |
B9 | 120.00 | 419 | 0.70730 |
B9 | 121.00 | 642 | 0.70747 |
B9 | 122.00 | 144 | 0.70744 |
B9 | 123.00 | 127 | 0.70801 |
B9 | 124.00 | 44 | 0.70767 |
B9 | 125.00 | 243 | 0.70763 |
B9 | 126.00 | 288 | 0.70743 |
B9 | 127.00 | 193 | 0.70725 |
B9 | 128.00 | 202 | 0.70721 |
B9 | 129.00 | 690 | 0.70755 |
B9 | 130.00 | 359 | 0.70747 |
B14 | 131.00 | 455 | 0.70755 |
B14 | 132.00 | 434 | 0.70750 |
B14 | 133.00 | 508 | 0.70749 |
B14 | 134.00 | 471 | 0.70746 |
B14 | 135.00 | 362 | 0.70747 |
B14 | 136.00 | 163 | 0.70731 |
B14 | 137.00 | 163 | 0.70731 |
B14 | 138.00 | 266 | 0.70735 |
B14 | 139.00 | 75 | 0.72859 |
B14 | 140.00 | 224 | 0.71131 |
B14 | 141.00 | 235 | 0.70761 |
B14 | 142.00 | 234 | 0.72629 |
B14 | 143.00 | 71 | 0.70721 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salih, N.; Préat, A.; Gerdes, A.; Konhauser, K.; Proust, J.-N. Tracking the Origin and Evolution of Diagenetic Fluids of Upper Jurassic Carbonate Rocks in the Zagros Thrust Fold Belt, NE-Iraq. Water 2021, 13, 3284. https://doi.org/10.3390/w13223284
Salih N, Préat A, Gerdes A, Konhauser K, Proust J-N. Tracking the Origin and Evolution of Diagenetic Fluids of Upper Jurassic Carbonate Rocks in the Zagros Thrust Fold Belt, NE-Iraq. Water. 2021; 13(22):3284. https://doi.org/10.3390/w13223284
Chicago/Turabian StyleSalih, Namam, Alain Préat, Axel Gerdes, Kurt Konhauser, and Jean-Noël Proust. 2021. "Tracking the Origin and Evolution of Diagenetic Fluids of Upper Jurassic Carbonate Rocks in the Zagros Thrust Fold Belt, NE-Iraq" Water 13, no. 22: 3284. https://doi.org/10.3390/w13223284
APA StyleSalih, N., Préat, A., Gerdes, A., Konhauser, K., & Proust, J. -N. (2021). Tracking the Origin and Evolution of Diagenetic Fluids of Upper Jurassic Carbonate Rocks in the Zagros Thrust Fold Belt, NE-Iraq. Water, 13(22), 3284. https://doi.org/10.3390/w13223284