Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Agronomic Parameters
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, T.; Byerlee, D.; Edmeades, G. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? Australian Centre for International Agricultural Research (ACIAR): Canberra, ACT, Australia, 2014; p. 158.
- FAOSTAT Statistics Database. Crops and Crops Processed. Food and Agriculture Organization of the United Nations. Last Update: 15 September 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 October 2021).
- Schlüter, U.; Mascher, M.; Colmsee, C.; Scholz, U.; Bräutigam, A.; Fahnenstich, H.; Sonnewald, U. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate pomeostasis. Plant. Physiol. 2012, 160, 1384–1406. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African Maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Garcia, A.G.; Guerra, L.C.; Hoogenboom, G. Water use and water use efficiency of sweet corn under different weather conditions and soil moisture regimes. Agric. Water Manag. 2009, 96, 1369–1376. [Google Scholar] [CrossRef]
- Skuras, D.; Psaltopoulos, D. A broad overview of the main problems derived from climate change that will affect agricultural production in the Mediterranean area. In Building Resilience for Adaptation to Climate Change in the Fisheries and Aquaculture Sector, Proceedings of a Joint FAO/OECD Workshop, Rome, Italy, 23–24 April 2012; Food and Agriculture Organization of the United Nations Organisation for Economic Co-Operation and Development: Rome, Italy, 2012; pp. 217–260. [Google Scholar]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 2017, 7, 1–13. [Google Scholar]
- Touchan, R.; Kherchouche, D.; Oudjehih, B.; Touchan, H.; Slimani, S.; Meko, D.M. Dendroclimatology and wheat production in Algeria. J. Arid. Environ. 2016, 124, 102–110. [Google Scholar] [CrossRef]
- Witt, S.; Galicia, L.; Lisec, J.; Cairns, J.; Tiessen, A.; Araus, J.L.; Palacios-Rojas, N.; Fernie, A.F. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol. Plant. 2012, 5, 401–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adee, E.; Roozeboom, K.; Balboa, G.R.; Schlegel, A.; Ciampitti, I.A. Drought-tolerant corn hybrids yield more in drought-stressed environments with no penalty in non-stressed environments. Front. Plant. Sci. 2016, 7, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Prado, S.A.; Cabrera-Bosquet, L.; Grau, A.; Coupel-Ledru, A.; Millet, E.J.; Welcker, C.; Tardieu, F. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant. Cell Environ. 2018, 41, 314–326. [Google Scholar] [CrossRef]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef] [Green Version]
- Oktem, A. Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems. Agric. Water Manag. 2008, 95, 1003–1010. [Google Scholar] [CrossRef]
- Borrelli, L.; Castelli, F.; Ceotto, E.; Cabassi, G.; Tomasoni, C. Maize grain and silage yield and yield stability in a long-term cropping system experiment in Northern Italy. Eur. J. Agron. 2014, 55, 12–19. [Google Scholar] [CrossRef]
- Chukalla, A.; Krol, M.; Hoekstra, A. Marginal cost curves for water footprint reduction in irrigated agriculture: Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 3507–3524. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Ahmad, B.; Boote, K.; Hoogenboom, G. Adaptation strategies for maize production under climate change for semi-arid environments. Eur. J. Agron. 2020, 115, 1260402. [Google Scholar] [CrossRef]
- Baum, M.E.; Licht, M.A.; Huber, I. Archontoulis SV. Impacts of climate change on the optimum planting date of different maize cultivars in the central US Corn Belt. Eur. J. Agron. 2020, 119, 126101. [Google Scholar] [CrossRef]
- Laudien, R.; Schauberger, B.; Gleixner, S.; Gornott, C. Assessment of weather-yield relations of starchy maize at different scales in Peru to support the NDC implementation. Agric. For. Meteorol. 2020, 295, 108154. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Waters, C. Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agric. Syst. 2020, 181, 102805. [Google Scholar] [CrossRef]
- Ureta, C.; González, E.J.; Espinosa, A.; Trueba, A.; Piñeyro-Nelson, A.; Álvarez-Buylla, E.R. Maize yield in Mexico under climate change. Agric. Syst. 2020, 177, 102697. [Google Scholar] [CrossRef]
- Fekonja, M.; Bavec, F.; Grobelnik-Mlakar, S.; Turinek, M.; Jakop, M.; Bavec, M. Growth performance of sweet maize under non-typical maize growing conditions. Biol. Agric. Hortic. 2011, 27, 147–164. [Google Scholar] [CrossRef]
- Simić, M.; Dragicevic, V.; Chachalis, D.; Željko, D.; Brankov, M. Integrated weed management in long-term maize cultivation. Agriculture 2020, 107, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Y.; Yang, K.; Duan, F.; Liu, P.; Wang, Z.; Wang, J. Effects of legume intercropping and nitrogen input on net greenhouse gas balances, intensity, carbon footprint and crop productivity in sweet maize cropland in South China. J. Clean. Prod. 2021, 314, 127997. [Google Scholar] [CrossRef]
- Todorovich, M. An excel-based tool for real time irrigation management at field scale. In Proceedings of the International Symposium on Water and Land Management for Sustainable Irrigated Agriculture, Adana, Turkey, 4–8 April 2006. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO-Irrigation and Drainage Paper; Food and Agriculture Organization: Rome, Italy, 1998; p. 56. [Google Scholar]
- IBPGR. Annual Report 1991: International Board for Plant Genetic Resources; IBPGR: Rome, Italy, 1991; p. 86. [Google Scholar]
- Ciampitti, A.; Elmore, R.W.; Lauer, J. Corn growth and development. Dent 2011, 5, 75. [Google Scholar]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Q.; Sun, L.; Ali, S.; Liu, D.; Zhang, Y.; Ren, X.; Zhang, P.; Jia, Z. Deficit irrigation and planting patterns strategies to improve maize yield and water productivity at different plant densities in semiarid regions. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Fu, Y.; Huang, J.; Wu, C.; Zheng, C. Transcript profiling during the early development of the maize brace root via Solexa sequencing. FEBS J. 2011, 278, 156–166. [Google Scholar] [CrossRef]
- Wang, W.; Park, M.Y.; Wang, L.J.; Koo, Y.; Chen, X.Y.; Weigel, D.; Poethig, R.S. MiRNA control of vegetative phase change in trees. PLoS Genet. 2011, 7, e1002012. [Google Scholar] [CrossRef] [Green Version]
- Veenstra, R.; Messina, C.; Haag, L. Tiller contributions to low-density corn biomass and yield. Kans. Field Res. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Thapa, S.; Stewart, B.A.; Xue, Q.; Rhoades, M.B.; Angira, B.; Reznik, J. Canopy temperature, yield, and harvest index of corn as affected by planting geometry in a semi-arid environment. Field Crops Res. 2018, 227, 110–118. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Z.; Wang, J.; Liu, H.; Zhou, L.; Zhong, S.; Li, Y.; Zhu, C.; Liu, J.; Lin, Z. The tin1 gene retains the function of promoting tillering in maize. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, B.J.; Schlegel, A.J.; Stone, L.R.; Kirkham, M.B. Grain yield and plant characteristics of corn hybrids in the Great Plains. Agron. J. 2013, 105, 383–394. [Google Scholar] [CrossRef]
- Sangoi, L.; Schmitt, A.; Vieira, J.; Vargas, V.P.; Girardi, D.; Zoldan, S.R. A remoção dos perfilhos não aumenta o rendimento de grãos do milho, independentemente da época de semeadura. Ciênc. Rural 2012, 42, 1354–1359. [Google Scholar] [CrossRef]
- Hansey, C.N.; De Leon, N. Biomass yield and cell wall composition of corn with alternative morphologies planted at variable densities. Crop Sci. 2011, 51, 1005–1015. [Google Scholar] [CrossRef]
- Kapanigowda, M.; Stewart, B.; Howell, T.; Kadasrivenkata, H.; Baumhardt, R.L. Growing maize in clumps as a strategy for marginal climatic conditions. Field Crops Res. 2010, 118, 115–125. [Google Scholar] [CrossRef]
- Ullah, H.; Santiago-Arenas, R.; Ferdous, Z.; Attia, A.; Datta, A. Chapter Two-Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Adv. Agron. 2019, 156, 109–157. [Google Scholar]
- Vazin, F.; Hassanzadeh, M.; Madani, A.; Nassiri-Mahallati, M.; Nasri, M. Modeling light interception and distribution in mixed canopy of common cocklebur (Xanthium stramarium) in competition with corn. Planta Daninha 2010, 28, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Xiao, J.; Ming, B.; Xie, R.; Wang, K.; Hou, P.; Liu, G.; Zhang, G.; Chen, J.; Liu, W.; et al. Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates. Agric. Water Manag. 2021, 247, 106726. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, Y.; Uwimpaye, F.; Yan, Z.; Li, L.; Liu, A.; Shao, L. Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize. Agric. Water Manag. 2020, 245, 106628. [Google Scholar] [CrossRef]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef]
- Acevedo, E.; Hsiao, T.C.; Henderson, D.W. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant. Physiol. 1971, 48, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, T.C. Leaf and root growth in relation to water status. Hort. Sci. 2000, 35, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Jin, J.; He, J. Effects of severe water stress on maize growth processes in the field. Sustainability 2019, 11, 5086. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.E.-M.H. Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). J. Saudi Soc. Agric. Sci. 2011, 10, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Cao, Z.; Xiao, Y.; Fang, Z.; Zhu, Y. Towards fine-grained maize tassel flowering status recognition: Dataset, theory and practice. Appl. Soft Comput. 2017, 56, 34–45. [Google Scholar] [CrossRef]
- Cai, F.; Zhang, Y.; Mi, N.; Ming, H.; Zhang, S.; Zhang, H.; Zhao, X. Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree. Agric. Water Manag. 2020, 241, 106379. [Google Scholar] [CrossRef]
- Gheysari, M.; Sadeghi, S.H.; Loescher, H.W.; Amiri, S.; Zareian, M.J.; Majidi, M.M.; Asgarinia, P.; Payero, J.O. Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agric. Water Manag. 2017, 182, 126–138. [Google Scholar] [CrossRef] [Green Version]
- Mi, N.; Cai, F.; Zhang, Y.; Ji, R.; Zhang, S.; Wang, Y. Differential responses of maize yield to drought at vegetative and reproductive stages. Plant Soil Environ. 2018, 64, 260–267. [Google Scholar]
- Ribaut, J.M.; Betran, J.; Monneveux, P.; Setter, T. Drought tolerance in maize. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: New York, NY, USA, 2009; pp. 311–344. [Google Scholar]
- Ober, E.S.; Sharp, R.E. Regulation of root growth responses to water deficit. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops; Jenks, M.A., Hasegawa, P.M., Jain, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 33–54. [Google Scholar]
- Stepanovic, S.; Rudnick, D.; Kruger, G. Impact of maize hybrid selection on water productivity under deficit irrigation in semiarid western Nebraska. Agric. Water Manag. 2021, 244, 106610. [Google Scholar] [CrossRef]
- Di Paolo, E.; Rinaldi, M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Res. 2008, 105, 202–210. [Google Scholar] [CrossRef]
- Nyagumbo, I.; Nyamadzawo, G.; Madembo, C. Effects of three in-field water harvesting technologies on soil water content and maize yields in a semi-arid region of Zimbabwe. Agric. Water Manag. 2019, 216, 206–213. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, G.; Li, Y.; Wang, Q.; Dang, P.; Qin, X.; Zou, Y.; Chen, Y.; Siddique, K.H.M. Straw incorporation with ridge-furrow plastic film mulch alters soil fungal community and increases maize yield in a semiarid region of China. Appl. Soil Ecol. 2021, 167, 104038. [Google Scholar] [CrossRef]
- Farré, I.; Faci, M.J. Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agric. Water Manag. 2009, 9, 383–394. [Google Scholar] [CrossRef]
- Al-Naggar, A.M.M.; Shabana, R.A.; Atta, M.M.M.; Al-Khalil, T.H. Maize response to elevated plant density combined with lowered N-fertilizer rate is genotype-dependent. Crop J. 2015, 3, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Mounce, R.B.; O’Shaughnessy, S.A.; Blaser, B.C.; Colaizzi, P.D.; Evett, S.R. Crop response of drought-tolerant and conventional maize hybrids in a semiarid environment. Irrig. Sci. 2016, 34, 231–244. [Google Scholar] [CrossRef]
- Moradi, H.; Akbari, G.A.; Khavari Khorasani, S.; Ramshini, H.A. Evaluation of drought tolerance in corn (Zea mays L.) new hybrids with using stress tolerance indices. Eur. J. Sustain. Dev. 2012, 1, 543–560. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tao, H.; Zhang, B.; Huang, S.; Wang, P. Timing of water deficit limits maize kernel setting in association with changes in the source-flow-sink relationship. Front. Plant Sci. 2018, 9, 1326. [Google Scholar] [CrossRef] [Green Version]
- Avila, R.G.; Magalhaes, P.C.; De Alvarenga, A.A.; de Oluveira Lavinsky, A.; Campos, C.N.; Gomes Júnior, C.C.; De Souza, T.C. Drought-tolerant maize genotypes invest in root system and maintain high harvest index during water stress. Braz. J. Maize Sorghum 2016, 15, 450–460. [Google Scholar] [CrossRef]
- Comas, L.H.; Trout, T.J.; De Jonge, K.C.; Zhang, H.; Gleason, S.M. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric. Water Manag. 2019, 212, 433–440. [Google Scholar] [CrossRef]
Stones and gravel | g/kg | 75 |
Sand | 170 | |
Clay | 234 | |
Silt | 596 | |
Textural Class (USDA) | Silty loam | |
pH (H2O); 1:2.5 | 8.1 | |
pH (CaCl2); 1:2.5 | 7.6 | |
Electrical conductivity 1:2 at 25 °C | dS/m | 0.24 |
Total Carbonate | g/kg | 55 |
Organic C | 11.6 | |
Total N | 0.9 | |
Available P | mg/kg | 17 |
K+ exchangeable | 465 |
Year | Treatments | Secondary Roots (%) | Stalk Tillers (%) | Foliage Cover |
---|---|---|---|---|
2019 | FI | 100 | 100 | Large |
DI | 87 | 60 | intermediate | |
RC | 0 | 0 | Small | |
2020 | FI | 27 | 33 | Large |
DI | 47 | 0 | intermediate | |
RC | 0 | 0 | Small |
RC | DI | FI | ||||||
---|---|---|---|---|---|---|---|---|
N° of Internodes | Percentages of Plants | N° of Internodes | Percentages of Plants | N° of Internodes | Percentages of Plants | |||
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | |||
5 | 47 | 53 | 8 | 0 | 20 | 8 | 0 | 20 |
6 | 53 | 27 | 9 | 7 | 13 | 9 | 0 | 20 |
7 | 0 | 20 | 10 | 13 | 27 | 10 | 7 | 20 |
11 | 80 | 40 | 11 | 93 | 40 |
Year | Treatments | Marketable Yield (t ha−1) | Not-Marketable Yield (t ha−1) |
---|---|---|---|
2019 | FI | 21.5 ± 2.8 a | 4.3 ± 2.0 a |
DI | 8.8 ± 3.2 b | 0.0 ± 0.0 b | |
2020 | FI | 22.1 ± 2.7 a | 3.4 ± 1.7 |
DI | 9.5 ± 3.5 b | 1.8 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piscitelli, L.; Colovic, M.; Aly, A.; Hamze, M.; Todorovic, M.; Cantore, V.; Albrizio, R. Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region. Water 2021, 13, 3285. https://doi.org/10.3390/w13223285
Piscitelli L, Colovic M, Aly A, Hamze M, Todorovic M, Cantore V, Albrizio R. Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region. Water. 2021; 13(22):3285. https://doi.org/10.3390/w13223285
Chicago/Turabian StylePiscitelli, Lea, Milica Colovic, Adel Aly, Mohamad Hamze, Mladen Todorovic, Vito Cantore, and Rossella Albrizio. 2021. "Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region" Water 13, no. 22: 3285. https://doi.org/10.3390/w13223285
APA StylePiscitelli, L., Colovic, M., Aly, A., Hamze, M., Todorovic, M., Cantore, V., & Albrizio, R. (2021). Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region. Water, 13(22), 3285. https://doi.org/10.3390/w13223285