Influence of Filter Tube of Pumping Well on Groundwater Drawdown during Deep Foundation Pit Dewatering
Abstract
:1. Introduction
2. Project Background Description
2.1. Project Overview
2.2. Engineering Geological and Hydrogeological Conditions
2.3. Field Pumping Test
3. Numerical Simulations
3.1. Mathematical Model and Software Introduction
3.2. Numerical Model
3.3. Model Verification
4. Discussion
4.1. Wall-Well Patterns of the Dewatering Inside the Foundation Pit
4.2. Simulation Cases and Results Considering Wall-Well Patterns
4.3. Impact of the Position of Filter Tube
4.4. Impact of the Length of Filter Tube
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.S.; Shen, S.L.; Du, Y.J. Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures. Eng. Geol. 2009, 109, 241–254. [Google Scholar] [CrossRef]
- Xu, Y.S.; Wu, H.N.; Shen, J.S.; Zhang, N. Risk and impacts on the environment of free-phase biogas in Quaternary deposits along the coastal region of Shanghai. Ocean Eng. 2017, 137, 129–137. [Google Scholar] [CrossRef]
- Zhou, N.Q.; Vermeer, P.A.; Lou, R.X.; Tang, Y.Q.; Jiang, S.M. Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence. Eng. Geol. 2010, 114, 251–260. [Google Scholar] [CrossRef]
- Wu, Y.X.; Zheng, Q.; Zhou, A.N.; Shen, S.L. Numerical evaluation of the ground response induced by dewatering in a multi-aquifer system. Geosci. Front. 2021, 12, 101209. [Google Scholar] [CrossRef]
- Zeng, C.F.; Wang, S.; Xue, X.L.; Zheng, G.; Mei, G.X. Evolution of deep ground settlement subject to groundwater drawdown during dewatering in a multi-layered aquifer-aquitard system: Insights from numerical modelling. J. Hydrol. 2021, 603, 127078. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Karstunen, M.; Chang, C.S.; Koskinen, M.; Lojander, M. Modeling time-dependent behavior of soft sensitive clay. J. Geotech. Geoenviron. Eng. 2011, 137, 1103–1113. [Google Scholar] [CrossRef]
- Xu, Y.S.; Shen, J.S.; Zhou, A.N.; Arulrajah, A. Geological and hydrogeological environment with geohazards during underground construction in Hangzhou: A review. Arab. J. Geosci. 2018, 11, 544. [Google Scholar] [CrossRef]
- Zeng, C.F.; Xue, X.L.; Zheng, G.; Xue, T.Y.; Mei, G.X. Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system. J. Hydrol. 2018, 559, 609–626. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Yin, Z.Y.; Xu, Y.S. Characteristics of groundwater seepage with cut-off wall in gravel aquifer. II: Numerical analysis. Can. Geotech. J. 2015, 52, 1539–1549. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Xu, Y.S.; Yin, Z.Y. Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: Field observations. Can. Geotech. J. 2015, 52, 1526–1538. [Google Scholar] [CrossRef]
- Shen, S.L.; Wu, H.N.; Cui, Y.J.; Yin, Z.Y. Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunn. Undergr. Space Technol. 2014, 40, 309–323. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Yuan, D.J. Characteristics of dewatering induced drawdown curve under blocking effect of retaining wall in aquifer. J. Hydrol. 2016, 539, 554–566. [Google Scholar] [CrossRef]
- Zeng, C.F.; Zheng, G.; Xue, X.L.; Mei, G.X. Combined recharge: A method to prevent ground settlement induced by redevelopment of recharge wells. J. Hydrol. 2019, 568, 1–11. [Google Scholar] [CrossRef]
- Wang, J.X.; Wang, P.; Sui, D.C. Numerical simulation of pumping well-underground concrete wall-recharging well in dewatering of deep foundation pit. In Advanced Materials Research; Trans Tech Publication: Zurich, Switzerland, 2012; pp. 1764–1768. [Google Scholar]
- Lu, W.; Zhao, D.; Wang, Y. The Effect of Excavation Dewatering and Supporting Structure Deformation on Soil Settlement. Electron. J. Geotech. Eng. 2015, 20, 3955–3964. [Google Scholar]
- Wang, X.W.; Xu, Y.S. Impact of the Depth of Diaphragm Wall on the Groundwater Drawdown during Foundation Dewatering Considering Anisotropic Permeability of Aquifer. Water 2021, 13, 418. [Google Scholar] [CrossRef]
- Xu, Y.S.; Yan, X.X.; Shen, S.L.; Zhou, A.N. Experimental investigation on the blocking of groundwater seepage from a waterproof curtain during pumped dewatering in an excavation. Hydrogeol. J. 2019, 27, 2659–2672. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Lyu, H.M.; Zhou, A.N. Analyses of leakage effect of waterproof curtain during excavation dewatering. J. Hydrol. 2020, 583, 124582. [Google Scholar] [CrossRef]
- Li, G.M.; Li, M.S. Research on Control Measures Unclosed Curtain for Cutting off Drains on Dewatering of Foundation Pit. Chin. J. Undergr. Space Eng. 2020, 16, 921–932. (In Chinese) [Google Scholar]
- Wu, Y.X.; Lyu, H.M.; Han, J.; Shen, S.L. Dewatering–induced building settlement around a deep excavation in soft deposit in Tianjin, China. J. Geotech. Geoenviron. Eng. 2019, 145, 05019003. [Google Scholar] [CrossRef]
- Shi, C.H.; Sun, X.H.; Liu, S.L.; Cao, C.Y.; Liu, L.H.; Lei, M.F. Analysis of Seepage Characteristics of a Foundation Pit with Horizontal Waterproof Curtain in Highly Permeable Strata. Water 2021, 13, 1303. [Google Scholar] [CrossRef]
- Shen, S.L.; Wu, Y.X.; Misra, A. Calculation of head difference at two sides of a cut-off barrier during excavation dewatering. Comput. Geotech. 2017, 91, 192–202. [Google Scholar] [CrossRef]
- Yang, T.L.; Yan, X.X.; Wang, H.M.; Huang, X.L.; Zhan, G.H. Comprehensive experimental study on prevention of land subsidence caused by dewatering in deep foundation pit with hanging waterproof curtain. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.X.; Liu, X.T.; Wu, Y.B.; Liu, S.L.; Wu, L.G.; Lou, R.X.; Lu, J.S.; Yin, Y. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering. J. Hydrol. 2017, 549, 277–293. [Google Scholar] [CrossRef]
- Wang, J.X.; Liu, X.T.; Liu, S.L.; Zhu, Y.F.; Pan, W.Q.; Zhou, J. Physical model test of transparent soil on coupling effect of cut-off wall and pumping wells during foundation pit dewatering. Acta Geotech. 2019, 14, 141–162. [Google Scholar] [CrossRef]
- Ma, L.; Xu, Y.S.; Shen, S.L.; Sun, W.J. Evaluation of the hydraulic conductivity of aquifers with piles. Hydrogeol. J. 2014, 22, 371–382. [Google Scholar] [CrossRef]
- Li, H.Q.; Fan, Y.Q.; Yu, M.J. Deep Shanghai project–a strategy of infrastructure integration for megacities. Tunn. Undergr. Space Technol. 2018, 81, 547–567. [Google Scholar] [CrossRef]
- Xu, Y.S.; Ma, L.; Du, Y.J.; Shen, S.L. Analysis of urbanisation induced land subsidence in Shanghai. Nat. Hazards 2012, 63, 1255–1267. [Google Scholar] [CrossRef]
- Jia, J.; Zhai, J.Q.; Li, M.G.; Zhang, L.L.; Xie, X.L. Performance of large-diameter circular diaphragm walls in a deep excavation: Case study of Shanghai Tower. J. Aerosp. Eng. 2019, 32, 04019078. [Google Scholar] [CrossRef]
- Shen, C. Comprehensive Control Analysis of Second Confined Aquifer of Super Deep Foundation Pit in Shanghai. Build. Constr. 2021, 43, 176–178. (In Chinese) [Google Scholar]
- Zhang, X.S.; Wang, J.X.; Wong, H.; Leo, C.J.; Liu, Q.J.; Tang, Y.Q.; Yan, X.L.; Sun, W.H.; Huang, Z.Q.; Hao, X.H. Land subsidence caused by internal soil erosion owing to pumping confined aquifer groundwater during the deep foundation construction in Shanghai. Nat. Hazards 2013, 69, 473–489. [Google Scholar] [CrossRef]
- Xu, Y.S.; Shen, S.L.; Du, Y.J.; Chai, J.C.; Horpibulsuk, S. Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system. Nat. Hazards 2013, 66, 731–748. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Wu, H.N.; Xu, Y.S.; Yin, Z.Y.; Sun, W.J. Environmental protection using dewatering technology in a deep confined aquifer beneath a shallow aquifer. Eng. Geol. 2015, 196, 59–70. [Google Scholar] [CrossRef]
- Cui, Y.G. Experimental Study on Short Filter Tube Relief Well for Confined Water in the 9th Layer of Shanghai. Build. Constr. 2021, 43, 162–165. (In Chinese) [Google Scholar]
- Yang, Z.H.; Sun, J.J. Enclosure Design and Engineering Practice of Ultra-deep Underground Working Well in Shanghai (I). Tunn. Rail Transit (In Chinese). 2019, s2, 27–37. [Google Scholar]
- Zhang, D.D.; Song, C.Y.; Chen, L.Z. Numerical evaluation of land subsidence induced by dewatering in deep foundation pit. J. Shanghai Jiaotong Univ. (Science) 2013, 18, 278–283. [Google Scholar] [CrossRef]
- Pujades, E.; De Simone, S.; Carrera, J.; Vázquez-Suñé, E.; Jurado, A. Settlements around pumping wells: Analysis of influential factors and a simple calculation procedure. J. Hydrol. 2017, 548, 225–236. [Google Scholar] [CrossRef]
- Wu, H.N.; Shen, S.L.; Chen, R.P.; Zhou, A.N. Three-dimensional numerical modelling on localised leakage in segmental lining of shield tunnels. Comput. Geotech. 2020, 122, 103549. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Y.Z.; Luo, L.H.; Liu, S.Q.; Sun, W.J.; Zeng, Y.F. Quantitative evaluation and prediction of water inrush vulnerability from aquifers overlying coal seams in Donghuantuo Coal Mine, China. Environ. Earth Sci. 2015, 74, 1429–1437. [Google Scholar] [CrossRef]
- Xu, Y.S.; Ma, L.; Shen, S.L.; Sun, W.J. Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeol. J. 2012, 20, 1623–1634. [Google Scholar] [CrossRef]
- Wang, X.W.; Yang, T.L.; Xu, Y.S.; Shen, S.L. Evaluation of optimized depth of waterproof curtain to mitigate negative impacts during dewatering. J. Hydrol. 2019, 577, 123969. [Google Scholar] [CrossRef]
- Shen, S.L.; Xu, Y.S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 2011, 48, 1378–1392. [Google Scholar] [CrossRef]
- Wang, J.X.; Guo, T.P.; Wu, L.G.; Zhu, Q.F.; Tang, Y.Q.; Yang, P. Mechanism and Application of Interaction Between Underground Wall and Well in Dewatering for Deep Excavation. Chin. J. Undergr. Space Eng. 2010, 6, 564–570. (In Chinese) [Google Scholar]
- Xu, Y.S.; Wu, H.N.; Wang, B.Z.F.; Yang, T.L. Dewatering induced subsidence during excavation in a Shanghai soft deposit. Environ. Earth Sci. 2017, 76, 351. [Google Scholar] [CrossRef]
- Finno, R.J.; Blackburn, J.T.; Roboski, J.F. Three-Dimensional Effects for Supported Excavations in Clay. J. Geotech. Geoenviron. Eng. 2007, 133, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.S.; Shen, S.L.; Ma, L.; Sun, W.J.; Yin, Z.Y. Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng. Geol. 2014, 183, 254–264. [Google Scholar] [CrossRef]
Pumping Well | Observation Well | Pumping Time t (d) | Discharge Rate Q (m3/h) |
---|---|---|---|
P1 | OB1 | 0–1.30 | 240 |
P2 | 0–1.30 | 266 | |
P3 | 0–0.50, 0.75–1.30 | 160 |
No. | Hydrogeological Strata | Thickness (m) | γ (kN/m3) | e | Kh (m/d) | Kv (m/d) | SS (1/m) |
---|---|---|---|---|---|---|---|
1 | Aq01 | 9.60 | 19.00 | 0.651 | 4.32 × 10−3 | 7.20 × 10−4 | 1.00 × 10−4 |
2 | AdI | 7.80 | 17.40 | 0.548 | 2.61 × 10−4 | 1.30 × 10−4 | 1.75 × 10−4 |
3 | Aq02 | 9.00 | 17.70 | 0.474 | 3.10 × 10−1 | 1.50 × 10−1 | 9.59 × 10−5 |
4 | AdII | 2.50 | 19.40 | 0.605 | 1.70 × 10−2 | 1.10 × 10−3 | 5.47 × 10−4 |
5 | AqI | 28.70 | 18.30 | 0.489 | 5.00 | 6.00 × 10−1 | 6.38 × 10−5 |
6 | AdII | 18.40 | 19.10 | 0.594 | 6.00 × 10−1 | 4.00 × 10−2 | 4.50 × 10−4 |
7 | AqII | 24.00 | 18.70 | 0.405 | 9.50 × 101 | 9.00 | 2.00 × 10−5 |
8 | AqIII | 8.80 | 19.10 | 0.470 | 5.50 × 101 | 7.00 | 3.00 × 10−5 |
Diaphragm wall | 1.00 × 10−10 | 1.00 × 10−10 | 1.00 × 10−9 |
Condition I (L = 4 m) | Condition II (Dt = 76 m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pattern | Calculation Case | Rp (m) | Dt (m) | Db (m) | Pattern | Calculation Case | L (m) | Rl (%) | Rp (m) | Db (m) |
I | I−1 | −12 | 76 | 80 | I | II−1 | 4 | 16.7 | −12 | 80 |
I−2 | −10 | 78 | 82 | II−2 | 6 | 25.0 | −10 | 82 | ||
I−3 | −8 | 80 | 84 | II−3 | 8 | 33.3 | −8 | 84 | ||
I−4 | −6 | 82 | 86 | II−4 | 10 | 41.7 | −6 | 86 | ||
I−5 | −4 | 84 | 88 | II−5 | 12 | 50.0 | −4 | 88 | ||
I−6 | −2 | 86 | 90 | II−6 | 14 | 58.3 | −2 | 90 | ||
I−7 | 0 | 88 | 92 | II−7 | 16 | 66.7 | 0 | 92 | ||
II | I−8 | 2 | 90 | 94 | II | II−8 | 18 | 75.0 | 2 | 94 |
III | I−9 | 4 | 92 | 96 | II−9 | 20 | 83.3 | 4 | 96 | |
I−10 | 6 | 94 | 98 | II−10 | 22 | 91.7 | 6 | 98 | ||
I−11 | 8 | 96 | 100 | II−11 | 24 | 100 | 8 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, X.; Xu, Y. Influence of Filter Tube of Pumping Well on Groundwater Drawdown during Deep Foundation Pit Dewatering. Water 2021, 13, 3297. https://doi.org/10.3390/w13223297
Zhang X, Wang X, Xu Y. Influence of Filter Tube of Pumping Well on Groundwater Drawdown during Deep Foundation Pit Dewatering. Water. 2021; 13(22):3297. https://doi.org/10.3390/w13223297
Chicago/Turabian StyleZhang, Xuehan, Xuwei Wang, and Yeshuang Xu. 2021. "Influence of Filter Tube of Pumping Well on Groundwater Drawdown during Deep Foundation Pit Dewatering" Water 13, no. 22: 3297. https://doi.org/10.3390/w13223297
APA StyleZhang, X., Wang, X., & Xu, Y. (2021). Influence of Filter Tube of Pumping Well on Groundwater Drawdown during Deep Foundation Pit Dewatering. Water, 13(22), 3297. https://doi.org/10.3390/w13223297