Exploring the Potential of the Cost-Efficient TAHMO Observation Data for Hydro-Meteorological Applications in Sub-Saharan Africa
Abstract
:1. Introduction
- Presentation of a basic overview of the availability of TAHMO stations across West Africa, and specifically the availability of TAHMO measurements for stations in BF, since data availability is of utmost importance for this challenging region.
- Perform a cross-comparison of the TAHMO measurements using geostatistical approaches like spatial correlograms to assess, whether the spatial dependence structure of meteorological variables can be reliably reproduced by this network.
- Conduct an inter-comparison between TAHMO- and the MET stations for the variables temperature (minimum, maximum), precipitation, relative humidity, and wind speed, aiming to evaluate the reliability and quality of the TAHMO measurements.
2. Materials and Methods
2.1. Study Area
2.2. Data Availability
2.2.1. TAHMO Data
2.2.2. Reference Data
2.3. Plausibility Checks
- Temperature should not fall below 0 °C
- Dry and rainy seasons should be observable in the rainfall patterns
- Annual precipitation should decrease towards the north, while remaining close to the climatological amounts
- Daily rainfall amounts >500 mm are not realistic
2.4. Statistical Analyses
3. Results and Discussion
3.1. Inter-Comparison of TAHMO Stations
3.2. Comparison with Stations from the BF Meteorological Service
3.2.1. Temperature
3.2.2. Precipitation
3.2.3. Relative Humidity
3.2.4. Wind Speed
4. Summary and Conclusions
- the selection of the study region (BF) is based on the availability of suitable reference stations and MV statistics of the time series. Further studies for different regions across SSA (e.g., in East Africa) are needed to verify the conclusions of this study.
- the performance evaluation is restricted to the daily aggregation level. Subdaily analyses, e.g., based on hourly values or diurnal ranges, could provide valuable additional information for hydro-meteorological applications.
- under given restrictions in the availability of reference data, not all of the variables could be validated for TAHMO. Solar radiation as well as soil moisture are very crucial variables for hydrological and agricultural impact studies. Thus, a performance analyses of these variables of TAHMO data would be of great importance for ongoing and future research activities in SSA.
- it could not be quantified to which extent the differences between TAHMO stations and reference stations can be attributed to differences in the sensors used. For this purpose, systematic comparisons (located in immediate vicinity) between the different sensors are necessary under prevailing climate conditions in SSA.
- bias correction approaches, usually known from impact modelling based on climate model output (e.g., [27]) could potentially be applied to correct for the biases observed in some of the TAHMO variables (e.g., wind speed). Further studies analysing the skill of bias correction for TAHMO variables are needed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Figures
References
- Jones, L.; Dougill, A.; Jones, R.G.; Steynor, A.; Watkiss, P.; Kane, C.; Koelle, B.; Moufouma-Okia, W.; Padgham, J.; Ranger, N.; et al. Ensuring climate information guides long-term development. Nat. Clim. Chang. 2015, 5, 812–814. [Google Scholar] [CrossRef]
- Lorenz, C.; Kunstmann, H. The Hydrological Cycle in Three State-of-the-Art Reanalyses: Intercomparison and Performance Analysis. J. Hydrometeorol. 2012, 13, 1397–1420. [Google Scholar] [CrossRef] [Green Version]
- WMO. Progress/Activity Reports Presented at CBS-XIV (Unedited) Progress/Activity Reports Presented at CBS-XIV Contents; Technical Report; WMO: Geneva, Switzerland, 2009. [Google Scholar]
- Dinku, T. Challenges with availability and quality of climate data in Africa. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 71–80. [Google Scholar] [CrossRef]
- Salack, S.; Bossa, A.; Bliefernicht, J.; Berger, S.; Yira, Y.; Sanoussi, K.A.; Guug, S.; Heinzeller, D.; Avocanh, A.S.; Hamadou, B.; et al. Designing transnational hydroclimatological observation networks and data sharing policies in West Africa. Data Sci. J. 2019, 18, 33. [Google Scholar] [CrossRef]
- Laux, P.; Dieng, D.; Portele, T.C.; Wei, J.; Shang, S. A High-Resolution Regional Climate Model Physics Ensemble for Northern Sub-Saharan Africa. Front. Earth Sci. 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Klein, C.; Heinzeller, D.; Bliefernicht, J.; Kunstmann, H. Variability of West African monsoon patterns generated by a WRF multi-physics ensemble. Clim. Dyn. 2015, 45, 2733–2755. [Google Scholar] [CrossRef] [Green Version]
- Laux, P.; Kunstmann, H.; Bárdossy, A. Predicting the regional onset of the rainy season in West Africa. Int. J. Climatol. 2008, 28, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Laux, P.; Wagner, S.; Wagner, A.; Jacobeit, J.; Bárdossy, A.; Kunstmann, H. Modelling daily precipitation features in the Volta Basin of West Africa. Int. J. Climatol. 2009, 29, 937–954. [Google Scholar] [CrossRef] [Green Version]
- Laux, P.; Jäckel, G.; Tingem, R.M.; Kunstmann, H. Impact of climate change on agricultural productivity under rainfed conditions in Cameroon. A method to improve attainable crop yields by planting date adaptations. Agric. For. Meteorol. 2010, 150, 1258–1271. [Google Scholar] [CrossRef]
- Sylla, M.B.; Faye, A.; Klutse, N.A.B.; Dimobe, K. Projected increased risk of water deficit over major West African river basins under future climates. Clim. Chang. 2018, 151, 247–258. [Google Scholar] [CrossRef]
- Dieng, D.; Laux, P.; Smiatek, G.; Heinzeller, D.; Bliefernicht, J.; Sarr, A.; Gaye, A.T.; Kunstmann, H. Performance Analysis and Projected Changes of Agroclimatological Indices Across West Africa Based on High-Resolution Regional Climate Model Simulations. J. Geophys. Res. Atmos. 2018, 123, 7950–7973. [Google Scholar] [CrossRef]
- van de Giesen, N.; Hut, R.; Selker, J. The Trans-African Hydro-Meteorological Observatory (TAHMO). Wiley Interdiscip. Rev. Water 2014, 1, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Boluwade, A. Remote sensed-based rainfall estimations over the East and West Africa regions for disaster risk management. ISPRS J. Photogramm. Remote Sens. 2020, 167, 305–320. [Google Scholar] [CrossRef]
- Nasirudeen, A.F.; Kabo-bah, A.T.; Amo-Boateng, M.; Karthikeyan, B. Analysis of drought patterns in the Tano river basin of Ghana. Sci. Afr. 2021, 13, e00883. [Google Scholar] [CrossRef]
- Anand, M.; Molnar, P. Performance of TAHMO Zurich Weather Station; Technical Report; Institute of Environmental Engineering: Zurich, Switzerland, 2018. [Google Scholar]
- Dombrowski, O.; Franssen, H.J.H.; Brogi, C.; Bogena, H.R. Performance of the ATMOS41 all-in-one weather station for weather monitoring. Sensors 2021, 21, 741. [Google Scholar] [CrossRef] [PubMed]
- Sultan, B.; Janicot, S. The West African Monsoon Dynamics. Part II: The “Preonset” and “Onset” of the Summer Monsoon. J. Clim. 2003, 16, 3407–3427. [Google Scholar] [CrossRef]
- Nicholson, S.E. The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol. 2013, 2013, 1–32. [Google Scholar] [CrossRef]
- METER GROUP. ATMOS41. Available online: http://library.metergroup.com/Manuals/20635_ATMOS41_Manual_Web.pdf (accessed on 22 November 2020).
- Wilks, D.S. Forecast Verification; Academic Press: Cambridge, MA, USA, 2011; Volume 100, pp. 301–394. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Stevenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Sciences; Wiley and Sons: London, UK, 2003; p. 240. [Google Scholar] [CrossRef]
- Ciach, G.J.; Krajewski, W.F. Analysis and modeling of spatial correlation structure in small-scale rainfall in Central Oklahoma. Adv. Water Resour. 2006, 29, 1450–1463. [Google Scholar] [CrossRef]
- Lorenz, M.; Bliefernicht, J.; Haese, B.; Kunstmann, H. Copula-based downscaling of daily precipitation fields. Hydrol. Process. 2018, 32, 3479–3494. [Google Scholar] [CrossRef]
- Fan, C.; Yin, S.; Chen, D. Spatial correlations of daily precipitation over mainland China. Int. J. Climatol. 2021, 41, 6350–6365. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Laux, P.; Rötter, R.P.; Webber, H.; Dieng, D.; Rahimi, J.; Wei, J.; Faye, B.; Srivastana, A.; Bliefernicht, J.; Adeyeri, O.; et al. To bias correct or not to bias correct ? An agricultural impact modelers’ perspective on regional climate model data. Agric. For. Meteorol. 2021, 305–306, 108406. [Google Scholar] [CrossRef]
TAHMO Station Code and Name | MET Station Name | Distance (m) |
---|---|---|
TA00160 Station Somgande Meteo | Ouagadougou aéro | 5700 |
TA00161 Boromo | Boromo | 1800 |
TA00162 Farakobo | Bobo-Dioulasso | 8750 |
TA00163 Dédougou | Dédougou | 380 |
TA00164 Ouahigouya | Ouahigouya | 2680 |
TA00165 Pô | Pô | 1580 |
TA00167 Dori | Dori | 3520 |
TA00168 Fada | Fada Ngourma | 2850 |
TA10069 Bogandé | Bogandé | 3020 |
TA00170 Gaoua | Gaoua | 6100 |
TAHMO | 2018 (mm) | 2019 (mm) | MET Station | 2018 (mm) | 2019 (mm) |
---|---|---|---|---|---|
TA00170 | – | 1232 | Gaoua | 1414 | 1412 |
TA00165 | – | 1467 | Pô | 1052 | 1043 |
TA00161 | 1016 | 1149 | Boromo | 1024 | 1088 |
TA00163 | 841 | 1292 | Dédougou | 835 | 969 |
TA00160 | 952 | 826 | Ouagadougou | 860 | 853 |
TA00168 | 618 | 774 | Fada N’Gourma | 693 | 711 |
TA10069 | 452 | 541 | Bogandé | 562 | 543 |
TA00167 | 400 | 467 | Dori | 494 | 571 |
Variable | Rainy Season | Dry Season | Complete Time Series |
---|---|---|---|
Precipitation | 0.71 | 0.61 | 0.73 |
Relative Humidity | 0.93 | 0.94 | 0.98 |
Temperature Max | 0.98 | 0.99 | 0.99 |
Temperature Min | 0.83 | 0.99 | 0.95 |
Wind Speed | 0.7 | 0.71 | 0.74 |
Station | RMSE | MAE | Correlation * |
---|---|---|---|
Temperature Max (Min) | |||
Ouagadougou | 0.93 (2.75) | 0.67 (2.18) | 0.97 (0.92) |
Boromo | 0.43 (0.92) | 0.29 (0.45) | 0.99 (0.96) |
Bobo-Dioulasso | 0.79 (4.36) | 0.66 (3.18) | 0.97 (0.71) |
Dédougou | 0.87 (0.97) | 0.72 (0.45) | 0.99 (0.95) |
Ouahigouya | 0.87 (1.13) | 0.80 (0.51) | 0.99 (0.95) |
Pô | 0.72 (0.91) | 0.62 (0.49) | 0.99 (0.95) |
Dori | 1.41 (1.34) | 1.28 (0.79) | 0.99 (0.96) |
Fada N’Gourma | 0.74 (1.11) | 0.65 (0.73) | 0.99 (0.96) |
Bogandé | 0.87 (1.12) | 0.80 (0.53) | 0.99 (0.96) |
Gaoua | 1.28 (1.17) | 0.61 (0.69) | 0.93 (0.94) |
Precipitation | |||
Ouagadougou | 9.09 | 2.44 | 0.66 |
Boromo | 5.95 | 1.47 | 0.74 |
Bobo-Dioulasso | 10.76 | 2.84 | 0.47 |
Dédougou | 7.39 | 1.84 | 0.73 |
Ouahigouya | 23.62 | 3.43 | 0.69 |
Pô | 9.37 | 2.47 | 0.74 |
Dori | 6.06 | 1.46 | 0.68 |
Fada N’Gourma | 9.27 | 1.78 | 0.71 |
Bogandé | 4.48 | 0.91 | 0.76 |
Gaoua | 7.60 | 2.12 | 0.71 |
Relative Humidity | |||
Ouagadougou | 28.67 | 19.09 | 0.62 |
Boromo | 5.27 | 4.29 | 0.99 |
Bobo-Dioulasso | 13.68 | 11.52 | 0.94 |
Dédougou | 5.72 | 4.81 | 0.98 |
Ouahigouya | 4.18 | 3.39 | 0.99 |
Pô | 7.19 | 5.86 | 0.98 |
Dori | 8.24 | 6.45 | 0.95 |
Fada N’Gourma | 5.37 | 4.57 | 0.99 |
Bogandé | 5.62 | 4.41 | 0.98 |
Gaoua | 9.07 | 6.49 | 0.94 |
Wind Speed | |||
Ouagadougou | 1.85 | 1.70 | 0.52 |
Boromo | 0.45 | 0.34 | 0.62 |
Bobo-Dioulasso | 2.05 | 1.77 | 0.22 |
Dédougou | 0.91 | 0.72 | 0.74 |
Ouahigouya | 0.66 | 0.53 | 0.69 |
Pô | 0.83 | 0.65 | 0.19 |
Dori | 1.16 | 1.04 | 0.66 |
Fada N’Gourma | 1.20 | 1.07 | 0.54 |
Bogandé | 1.03 | 0.86 | 0.80 |
Gaoua | 0.61 | 0.46 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schunke, J.; Laux, P.; Bliefernicht, J.; Waongo, M.; Sawadogo, W.; Kunstmann, H. Exploring the Potential of the Cost-Efficient TAHMO Observation Data for Hydro-Meteorological Applications in Sub-Saharan Africa. Water 2021, 13, 3308. https://doi.org/10.3390/w13223308
Schunke J, Laux P, Bliefernicht J, Waongo M, Sawadogo W, Kunstmann H. Exploring the Potential of the Cost-Efficient TAHMO Observation Data for Hydro-Meteorological Applications in Sub-Saharan Africa. Water. 2021; 13(22):3308. https://doi.org/10.3390/w13223308
Chicago/Turabian StyleSchunke, Julia, Patrick Laux, Jan Bliefernicht, Moussa Waongo, Windmanagda Sawadogo, and Harald Kunstmann. 2021. "Exploring the Potential of the Cost-Efficient TAHMO Observation Data for Hydro-Meteorological Applications in Sub-Saharan Africa" Water 13, no. 22: 3308. https://doi.org/10.3390/w13223308
APA StyleSchunke, J., Laux, P., Bliefernicht, J., Waongo, M., Sawadogo, W., & Kunstmann, H. (2021). Exploring the Potential of the Cost-Efficient TAHMO Observation Data for Hydro-Meteorological Applications in Sub-Saharan Africa. Water, 13(22), 3308. https://doi.org/10.3390/w13223308