The Application of a Self-Organizing Model for the Estimation of Crop Water Stress Index (CWSI) in Soybean with Different Watering Levels
Abstract
:1. Introduction
- (i)
- quantify the soybean ET and WUE with three watering levels (non-limited, water stressed and rainfed)
- (ii)
- analyze two soybean varieties differing in their water demands
- (iii)
- control the applicability of theoretical CWSIt under highly variable weather conditions of Hungary
- (iv)
- test the K-SOM model in the CWSIp prediction by applying easily accessible meteorological and crop variables (Ta, RHc and Tc).
2. Materials and Methods
2.1. Site Description, Agronomic Procedures, and Meteorological Observations
2.2. ET and WUE
2.3. CWSIt and Tc Readings
2.4. Kohonen Self-Organizing Maps (K-SOM)
- −
- selections of a specified number of neurons and random initialization of the weights of the components for each neuron.
- −
- performing iterative training where the nodes are adjusted in response to a set of training vectors, so that the nodes approximately minimize an integrated distance criterion.
- −
2.5. Statistics
3. Results
3.1. Weather Conditions between 2017–2020
3.2. Soybean Development, ET and WUE
3.3. CWSI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | one-way analysis of variance |
ARS | Agrometeorological Research Station |
BMU | Best Matching Unit |
Cfb | Köppen climate classification: oceanic climate with war summers |
cp | heat capacity of air in constant pressure, J kg−1 K−1 |
CWSI | Crop Water Stress Index |
CWSIp | predicted CWSI |
CWSIpm | the mean value of CWSIp |
CWSIt | theoretical CWSI of Jackson et al. |
DOY | Day-Of-Year |
es(Tc)–e | the difference in saturation and actual vapor concentrations of air, hPa |
ET | evapotranspiration, mm day−1 |
ET0 | FAO-56 Penman-Monteith reference evapotranspiration, mm day−1 |
ha | acre, 10,000 m2 |
HSD | Honestly Significant Difference |
K-SOM | Kohonen Self-Organizing Maps |
LAI | Leaf Area Index, m2 m−2 |
MAE | Mean Absolute Error |
NSE | Nash-Sutcliffe Efficiency |
p | air density, kg m−3 |
p | probability |
P | rainfed field treatment, mm day−1 |
PR | precipitation, mm day−1 |
QE | Quantization Error |
R1 | beginning bloom stage |
R2 | coefficient of determination |
R4-R5 | grain-filling stage |
ra | aerodynamic resistance, s m−1 |
RHc | relative humidity above canopy, % |
RMSE | Root Mean Square Error |
Rn | net radiation, W m−2 |
RO | water stressed treatment, mm day−1 |
S | season |
SD | Standard Deviation |
SI | Scatter Index |
Sig | Sigalia (soybean var.) |
Sin | Sinara (soybean var.) |
Ta | seasonal mean temperature, °C |
Tac | temperature above canopy, °C |
Tac | the ambient air temperature, °C |
Tc | canopy temperature, °C |
Tc-Ta | canopy- air temperature difference, °C |
TE | Topographic Error |
UV | ultraviolet radiation, 10 nm–400 nm |
V | variety |
VPD | Vapor Pressure Deficit, hPa |
W | water |
WUE | Water-Use Efficiency, kg m−3 |
WW | unlimited water supply treatment, mm day−1 |
y | yield, kg m−2 |
γ | psychrometric constant, hPa K−1 |
Δ | the slope of saturated vapor pressure-temperature relation, hPa K−1. |
References
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate change and drought: From past to future. Curr. Clim. Chang. Rep. 2018, 4, 164–170. [Google Scholar] [CrossRef]
- Aydinsakir, K. Yield and Quality Characteristics of Drip-Irrigated Soybean under Different Irrigation Levels. Agronomy 2018, 110, 1473–1481. [Google Scholar] [CrossRef]
- Buezo, J.; Sanz-Saez, A.; Jose, M.F.; Soba, D.; Aranjuelo, I.; Esteban, R. Drought tolerance response of high-yielding soybean varieties to mild drought: Physiological and photochemical adjustments. Physiol. Plant. 2019, 166, 88–104. [Google Scholar] [CrossRef] [Green Version]
- Wijewardana, C.; Reddy, K.R.; Alsajri, F.A.; Irby, J.T.; Krutz, J.; Golden, B. Quantifying soil moisture deficit effects on soybean yield and yield component distribution patterns. Irrig. Sci. 2018, 36, 241–255. [Google Scholar] [CrossRef]
- Mannan, M.A.; Mia, S.; Halder, E.; Dijkstra, F.A. Biochar application rate does not improve plant water availability in soybean under drought stress. Agr. Water Manag. 2021, 253, 106940. [Google Scholar] [CrossRef]
- Mullet, J.E.; Whitsitt, M.S. Plant cellular responses to water deficit. Plant Growth Regul. 1996, 20, 119–124. [Google Scholar] [CrossRef]
- Yang, M.H.; Jahufer, M.Z.Z.; He, J.; Dong, R.; Hoffmann, R.; Siddique, K.H.M.; Li, F.-M. Effect of traditional soybean breeding on water use strategy in arid and semi-arid areas. Eur. J. Agron. 2020, 120, 126128. [Google Scholar] [CrossRef]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Wagle, P.; Gowda, P.H.; Sui, R. Quantifying soybean evapotranspiration using an eddy covariance approach. Agric. Water Manag. 2018, 209, 228–239. [Google Scholar] [CrossRef]
- Tallec, T.; Béziat, P.; Jarosz, N.; Rivalland, V.; Ceschia, E. Crop’s water use efficiencies in a temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agric. For. Meteorol. 2013, 168, 69–81. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, R.D.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Jackson, R.D.; Kustas, W.P.; Choudhury, B.J. A re-examination of the crop water stress index. Irrig. Sci. 1988, 9, 309–317. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Agam, N.; Cohen, Y.; Alchanatis, V.; Ben-Gal, A. How sensitive is the CWSI to changes in solar radiation? Int. J. Remote Sens. 2013, 34, 6109–6120. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic modelling of the baseline temperatures for computation of the crop water stress index (CWSI) of a greenhouse cultivated lettuce crop. Comput. Electron. Agric. 2018, 153, 102–114. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 695–709. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef]
- Ferde, M.; Costa, V.C.; Mantovaneli, R.; Wyatt, N.L.P.; Rocha, P.A.; Brandão, G.P.; de Souza, J.R.; Gimenes, A.C.W.; Costa, F.S.; da Silva, E.G.P.; et al. Chemical characterization of the soils from black pepper (Piper nigrum L.) cultivation using principal component analysis (PCA) and Kohonen self-organizing map (KSOM). J. Soils Sediments. 2021, 21, 3098–3106. [Google Scholar] [CrossRef]
- Kohonen, T.; Oja, E.; Simula, O.; Visa, A.; Kangas, J. Engineering applications of the self-organizing map. Proc. IEEE 1996, 84, 1358–1384. [Google Scholar] [CrossRef]
- Kumar, N.; Adeloye, A.J.; Shankar, V.; Rustum, R. Neural computing modelling of the crop water stress index. Agric. Water Manag. 2020, 239, 106259. [Google Scholar] [CrossRef]
- Kumar, N.; Rustum, R.; Shankar, V.; Adeloye, A.J. Self-organizing map estimator for the crop water stress index. Comput. Electron. Agric. 2021, 187, 106232. [Google Scholar] [CrossRef]
- Anda, A.; Soós, G.; Menyhárt, L.; Kucserka, T.; Simon, B. Yield features of two soybean varieties under different water supplies and field conditions. Field Crops Res. 2020, 39, 549–566. [Google Scholar] [CrossRef]
- Anda, A.; Simon, B.; Soós, G.; Teixeira da Silva, J.A.; Farkas, Z.S.; Menyhárt, L. Assessment of soybean evapotranspiration and controlled water stress using traditional and converted evapotranspirometers. Atmosphere 2020, 11, 830. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization). Guide to Meteorological Instruments and Methods of Observation, 8th ed.; WMO Publications Board: Geneva, Switzerland, 2008. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meterol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Soós, G.; Anda, A. A methodological study on local application of the FAO-56 Penman-Monteith reference evapotranspiration equation. Georg. Agric. 2014, 18, 71–85. [Google Scholar]
- Allen, R.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper; No. 56; FAO: Rome, Italy, 1998. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E. Stages of Soybean Development; Special Report 80; Iowa State University: Ames, IA, USA, 1977. [Google Scholar]
- Anda, A.; Simon, B.; Soós, G.; Teixeira da Silva, J.A.; Kucserka, T. Crop-water relation and production of two soybean varieties under different water supplies. Theor. Appl. Climatol. 2019, 137, 1515–1528. [Google Scholar] [CrossRef]
- Payero, J.O.; Irmak, S. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric. Water Manag. 2013, 129, 31–43. [Google Scholar] [CrossRef]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009, 36, 978–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thom, A.S.; Oliver, H.R. On Penman’s equation for estimating regional evaporation. Q. J. R. Meteor. Soc. 1977, 103, 345–357. [Google Scholar] [CrossRef]
- Yotova, G.; Varbanov, M.; Tcherkezova, E.; Tsakovski, S. Water quality assessment of a river catchment by the composite water quality index and self-organizing maps. Ecol. Indic. 2021, 120, 06872. [Google Scholar] [CrossRef]
- Mari, M.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Application of self-organizing maps for PCDD/F pattern recognition of environmental and biological samples toevaluate the impact of a hazardous waste incinerator. Environ. Sci. Technol. 2010, 44, 3162–3168. [Google Scholar] [CrossRef] [PubMed]
- Sang, H.; Gelfand, A.E.; Lennard, C.; Hegerl, G.; Hewitson, B. Interpreting self-organizing maps through space-time data models. Ann. Appl. Stat. 2008, 2, 1194–1216. [Google Scholar] [CrossRef]
- Souid, F.; Telahigue, F.; Agoubi, B.; Kharroubi, A. Isotopic behavior and self-organizing maps for identifying groundwater salinization processes in Jerba Island, Tunisia. Environ. Earth Sci. 2020, 79, 175. [Google Scholar] [CrossRef]
- Montoya, F.; García, C.; Pintos, F.; Otero, A. Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions. Agric. Water Manag. 2017, 193, 30–45. [Google Scholar] [CrossRef]
- Ergo, V.V.; Lascano, R.; Vega, C.R.C.; Parola, R.; Carrera, C.S. Heat and water stressed field-grown soybean: A multivariate study on the relationship between physiological-biochemical traits and yield. Environ. Exp. Bot. 2018, 148, 1–11. [Google Scholar] [CrossRef]
- Ritter, H.; Kohonen, T. Self-Organizing Semantic Maps. Biol. Cybern. 1989, 61, 241–254. [Google Scholar] [CrossRef]
- Stefanovič, P.; Kurasova, O. Visual analysis of self-organizing maps. Nonlinear Anal. Model. Control 2011, 16, 488–504. [Google Scholar] [CrossRef] [Green Version]
- Jensen, H.E.; Svendsen, H.; Jensen, S.E.; Mogensen, V.O. Canopy-air temperature of crops grown under different irrigation regimes in a temperate humid climate. Irrig. Sci. 1990, 11, 181–188. [Google Scholar] [CrossRef]
- Han, M.; Zhang, H.; Kendall, C.; De Jonge, K.C.; Comas, L.H.; Gleason, S. Comparison of three crop water stress index models with sap flow measurements in maize. Agric. Water Manag. 2018, 203, 366–375. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Anda, A.; Simon, B.; Soós, G.; Menyhárt, L.; Kucserka, T. Investigation of soybean leaf area influenced by water supply. Időjárás 2019, 123, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Payero, J.O.; Melvin, S.R.; Irmak, S. Response of soybean to deficit irrigation in the semi-arid environment of west-central Nebraska. Trans. ASAE 2005, 48, 2189–2203. [Google Scholar] [CrossRef] [Green Version]
- Schneekloth, J.P.; Klocke, N.L.; Hergert, G.W.; Martin, D.L.; Clark, R.T. Crop Rotations With Full And Limited Irrigation And Dryland Management. Trans. ASAE 1991, 34, 2372–2380. [Google Scholar] [CrossRef]
- Gajić, B.; Kresović, B.; Tapanarova, A.; Životić, A.; Todorović, M. Effect of irrigation regime on yield, harvest index and water productivity of soybean grown under different precipitation conditions in a temperate environment. Agric. Water Manag. 2018, 210, 224–231. [Google Scholar] [CrossRef]
- Candogan, B.N.; Sincik, M.; Buyukcangaz, H.; Demirtas, C.; Goksoy, A.T.; Yazgan, S. Yield, Quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agric. Water Manag. 2013, 118, 113–121. [Google Scholar] [CrossRef]
- Kirnak, H.; Dogan, E.; Turkoglu, H. Effect of drip irrigation intensity on soybean seed yield and quality in the semi-arid Harran plain, Turkey. Span. J. Agric. Res. 2010, 8, 1208–1217. [Google Scholar] [CrossRef] [Green Version]
- Henry, C.G.; Sartori, G.M.S.; Gaspar, J.P.; Marchesan, E.; Hirsh, S.M.; Horton, A.P.; Espinoza, L.; Hunter, J. Deep Tillage and Gypsum Amendments on Fully, Deficit Irrigated, and Dryland Soybean. Agron. J. 2018, 110, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.Z.; Hamilton, S.K.; Bhardwaje, A.K.; Basso, B.; Thelen, K.D.; Robertson, G.P. Evapotranspiration and water use efficiency of continuous maize and maize and soybean in rotation in the upper Midwest US. Agric. Water Manag. 2019, 221, 92–98. [Google Scholar] [CrossRef]
- Ort, D.R.; Merchant, S.S.; Alric, J.; Barkan, A.; Blankenship, R.E.; Bock, R.; Croce, R.; Hanson, M.R.; Hibberd, J.M.; Long, S.P.; et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc. Natl. Acad. Sci. USA 2015, 112, 8529–8536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijewardana, C.; Alsajri, F.A.; Irby, J.T.; Krutz, L.J.; Golden, B.; Henry, W.B.; Gao, W.; Reddy, K.R. Physiological assessment of water deficit in soybean using midday leaf water potential and spectral features. J. Plant Interact. 2019, 14, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, D.C.; Halvorson, A.D. Nitrogen fertility influence on water stress and yield of winter wheat. Agron. J. 1990, 83, 1065–1070. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Ge, Y.; Heeren, D.M.; Walter-Shea, E.; Neale, C.M.U.; Irmak, S.; Woldt, W.E.; Bai, G.; Bhatti, S.; Maguire, M.S. Inter-relationships between water depletion and temperature differential in row crop canopies in a sub-humid climate. Agric. Water Manag. 2021, 256, 107061. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Jin, J.L.; Jiang, S.M.; Ning, S.W.; Liu, L. Quantitative response of soybean development and yield to drought stress during different growth stages in the Huaibei Plain, China. Agronomy 2020, 8, 97. [Google Scholar] [CrossRef] [Green Version]
Apr | May | June | July | August | September | ||
---|---|---|---|---|---|---|---|
Precipitation sums [mm] | Total | ||||||
Norm | 50.5 | 59.6 | 78.5 | 73.5 | 65.1 | 57.1 | 384.30 |
2017 | 20.9 | 38.8 | 61.1 | 53.8 | 32.7 | 140.1 | 347.40 |
2018 | 13.4 | 68.4 | 101.2 | 78.9 | 87.1 | 128.7 | 477.70 |
2019 | 28.7 | 125.0 | 50.4 | 92.1 | 25.9 | 48.5 | 370.60 |
2020 | 14 | 45.6 | 93.0 | 81.9 | 152.4 | 29.1 | 416.00 |
Monthly mean air temperatures [°C] | Mean | ||||||
Norm | 10.5 | 15.7 | 18.7 | 20.5 | 20.1 | 15.7 | 16.87 |
2017 | 10.8 | 16.6 | 21.2 | 22.3 | 22.8 | 15.1 | 18.14 |
2018 | 15.3 | 18.8 | 20.5 | 21.7 | 22.6 | 16.9 | 19.32 |
2019 | 11.9 | 13.0 | 22.8 | 22.8 | 22.6 | 17.1 | 18.39 |
2020 | 11.8 | 14.4 | 19.3 | 21.1 | 21.8 | 17.1 | 17.59 |
Relative humidity [%] | Mean | ||||||
2017 | 67.4 | 71.0 | 70.1 | 68.3 | 66.8 | 81.9 | 70.9 |
2018 | 69.0 | 73.5 | 74.2 | 71.7 | 74.3 | 79.8 | 73.8 |
2019 | 70.1 | 80.2 | 74.1 | 69 | 76.9 | 77.8 | 74.7 |
2020 | 56.4 | 66.0 | 74.0 | 69.8 | 75.9 | 75.8 | 69.6 |
Vapour pressure deficit [hPa] | Mean | ||||||
Norm | 0.39 | 0.53 | 0.61 | 0.71 | 0.64 | 0.37 | 0.54 |
2017 | 0.43 | 0.57 | 0.76 | 0.87 | 0.94 | 0.33 | 0.65 |
2018 | 0.55 | 0.59 | 0.64 | 0.76 | 0.72 | 0.38 | 0.61 |
2019 | 0.44 | 0.31 | 0.73 | 0.87 | 0.64 | 0.43 | 0.57 |
2020 | 0.61 | 0.57 | 0.59 | 0.77 | 0.65 | 0.48 | 0.61 |
Tc | Ta | (Tc-Tac) | CWSIt | |
---|---|---|---|---|
2017 | ||||
Sin WW | 28.5 ± 2.27 | 28.5 | 0.0 | 0.24 ± 0.01 |
Sig WW | 28.3 ± 2.21 | 29.2 | −0.9 | 0.20 ± 0.07 |
Sin RO | 31.2 ± 3.14 | 29.0 | 2.2 | 0.58 ± 0.09 |
Sig RO | 30.7 ± 2.29 | 29.5 | 1.2 | 0.52 ± 0.10 |
Sin P | 31.1 ± 3.35 | 30.1 | 1.0 | 0.55 ± 0.19 |
Sig P | 32.0 ± 3.20 | 30.2 | 1.8 | 0.59 ± 0.11 |
2018 | ||||
Sin WW | 27.7 ± 2.07 | 28.2 | −0.5 | 0.13 ± 0.01 |
Sig WW | 28.3 ± 2.65 | 28.4 | −0.1 | 0.21 ± 0.01 |
Sin RO | 29.4 ± 3.42 | 28.3 | 1.1 | 0.36 ± 0.20 |
Sig RO | 29.5 ± 3.01 | 28.5 | 1.0 | 0.40 ± 0.20 |
Sin P | 28.3 ± 2.66 | 28.9 | −0.6 | 0.20 ± 0.19 |
Sig P | 28.3 ± 2.79 | 28.8 | −0.5 | 0.21 ± 0.14 |
2019 | ||||
Sin WW | 27.8 ± 2.10 | 28.0 | −0.2 | 0.17 ± 0.01 |
Sig WW | 27.7 ± 2.08 | 28.2 | −0.5 | 0.16 ± 0.01 |
Sin RO | 30.5 ± 2.71 | 28.4 | 2.1 | 0.61 ± 0.02 |
Sig RO | 30.2 ± 2.88 | 28.7 | 1.5 | 0.64 ± 0.02 |
Sin P | 29.1 ± 2.55 | 28.7 | 0.4 | 0.41 ± 0.16 |
Sig P | 28.8 ± 2.50 | 28.3 | 0.5 | 0.39 ± 0.14 |
Characteristics | Values |
---|---|
Normalization method | |
Codebook | 160 × 4 |
Map Size | 10 × 6 |
Neighbourhood function | Gaussian |
Shape | Sheet |
Lattice | Hexagonal |
Final Topographic error (TE) | 0.593 |
Final Quantization error (QE) | 0.034 |
R2 | RMSE [mm] | MAE | NSE | SI | |
---|---|---|---|---|---|
Training period (2017–2018) | |||||
WW | 0.973 | 0.019 | 0.017 | 0.961 | 0.101 |
RO | 0.992 | 0.032 | 0.033 | 0.961 | 0.067 |
P | 0.985 | 0.047 | 0.043 | 0.965 | 0.105 |
Testing period (2019) | |||||
WW | 0.953 | 0.033 | 0.026 | 0.901 | 0.182 |
RO | 0.935 | 0.046 | 0.158 | 0.336 | 0.095 |
P | 0.946 | 0.068 | 0.083 | 0.617 | 0.152 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anda, A.; Simon-Gáspár, B.; Soós, G. The Application of a Self-Organizing Model for the Estimation of Crop Water Stress Index (CWSI) in Soybean with Different Watering Levels. Water 2021, 13, 3306. https://doi.org/10.3390/w13223306
Anda A, Simon-Gáspár B, Soós G. The Application of a Self-Organizing Model for the Estimation of Crop Water Stress Index (CWSI) in Soybean with Different Watering Levels. Water. 2021; 13(22):3306. https://doi.org/10.3390/w13223306
Chicago/Turabian StyleAnda, Angela, Brigitta Simon-Gáspár, and Gábor Soós. 2021. "The Application of a Self-Organizing Model for the Estimation of Crop Water Stress Index (CWSI) in Soybean with Different Watering Levels" Water 13, no. 22: 3306. https://doi.org/10.3390/w13223306
APA StyleAnda, A., Simon-Gáspár, B., & Soós, G. (2021). The Application of a Self-Organizing Model for the Estimation of Crop Water Stress Index (CWSI) in Soybean with Different Watering Levels. Water, 13(22), 3306. https://doi.org/10.3390/w13223306