Anthropogenic Disturbances Have Contributed to Degradation of River Water Quality in Arid Areas
Abstract
:Highlights
- A method to quantify human disturbance on the landscape was developed;
- The rivers in Eastern Loess Plateau were relatively sensitive to construction land;
- The rivers near the Yellow River are more vulnerable affected by soil erosion;
- Managers should adopt measures to protect water resources by land-use planning.
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Strategy
2.2.1. Sample Collection
2.2.2. Sample Determination
2.3. Assessment Model for River Quality
2.3.1. Eutrophication State of Rivers
2.3.2. Water Quality Assessment
2.4. Evaluation Model for Anthropogenic Interference
2.5. Data Statistics and Analyses
3. Results
3.1. Spatial Variation of Hydrochemical Indices
3.2. Hemeroby Index of Different Sub-Watersheds
3.3. Rivers’ State of Different Watersheds and Sub-Watersheds
3.3.1. Trophic Level Index of Different Watersheds and Rivers
3.3.2. CCME WQI of Different Watersheds and Sub-Watersheds
3.4. Relationship between Hemeroby Index and Rivers’ Environment
3.4.1. Relationship between HI and TLI
3.4.2. Correlation between Hemeroby Index and CCME WQI
4. Discussions
4.1. Spatial Variation of Hydrochemical Indices
4.2. Anthropogenic Disturbances of Different Sub-Watersheds
4.3. Rivers’ State of Different Watersheds and Sub-Watersheds
4.4. Relationship between Hemeroby Index and Rivers’ Environment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. World Development Indicators. 2018. Available online: http://data.worldbank.org/data-catalog/world-development-indicators (accessed on 2 October 2021).
- Rasheed, T.; Ahmad, N.; Nawaz, S.; Sher, F. Photocatalytic and adsorptive remediation of hazardous environmental pollutants by hybrid nanocomposites. Case Stud. Chem. Environ. Eng. 2020, 2, 100037. [Google Scholar] [CrossRef]
- Rashid, T.; Sher, F.; Hazafa, A.; Hashmi, R.; Zafar, A.; Rasheed, T.; Hussain, S. Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. J. Environ. Chem. Eng. 2020, 9, 104502. [Google Scholar] [CrossRef]
- Sadiq, H.; Sher, F.; Sehar, S.; Lima, E.; Zhang, S.; Iqbal, H.; Zafar, F.; Nuhanovic, M. Green synthesis of ZnO nanoparticles from Syzygium cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 2021, 335, 116567. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Zhao, G. Spatio-temporal characteristics of disturbance of land use change on major ecosystem function zones in China. Chin. Geogr. Sci. 2015, 25, 523–536. [Google Scholar] [CrossRef]
- Bagheri, A.; Aramesh, N.; Sher, F.; Bilal, M. Covalent organic frameworks as robust materials for sustainable mitigation of environmental pollutants. Chemosphere 2021, 270, 129523. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Nover, D.; Yang, G.; Chen, W.; Meng, H.; Zou, S.; Liu, C. Water quality assessment and pollution source identification of the eastern Poyang Lake Basin using multivariate statistical methods. Sustainability 2016, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dong, Q.; Costa, V.; Wang, X. A hierarchical Bayesian model for decomposing the impacts of human activities and climate change on water resources in China. Sci. Total Environ. 2019, 665, 836–847. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X. Using a combined evaluation method to assess water resources sustainable utilization in Fujian Province, China. Environ. Dev. Sustain. 2020, 5, 1–15. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Sun, J.; Li, J.; Yang, F.; Fu, Z. Spatiotemporal characteristics and ecological effects of the human interference index of the Yellow River Delta in recent 30 years. Ecol. Indic. 2018, 39, 1219–1220. [Google Scholar] [CrossRef]
- Mariano, D.; Santos, C.; Wardlow, B.; Anderson, M.; Schiltmeyer, A.; Tadesse, T.; Svoboda, M. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Tang, J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 2020, 246, 111890. [Google Scholar] [CrossRef]
- Kuo, Y.; Liu, W.; Zhao, E.; Li, R.; Muñoz-Carpena, R. Water quality variability in the middle and down streams of Han River under the influence of the Middle Route of South-North Water diversion project, China. J. Hydrol. 2018, 569, 218–229. [Google Scholar] [CrossRef]
- Strokala, M.; Kahilb, T.; Wadab, Y.; Albiacc, J.; Baid, Z.; Ermolievae, T.; Langanf, S.; Mad, L.; Oenemag, O.; Wagnerh, F.; et al. Cost-effective management of coastal eutrophication: A case study for the Yangtze River basin. Resour. Conserv. Recycl. 2020, 154, 104635. [Google Scholar] [CrossRef]
- Gu, Q.; Hu, H.; Ma, L.; Sheng, L.; Yang, S.; Zhang, X.; Zhang, M.; Zheng, K.; Chen, L. Characterizing the spatial variations of the relationship between land use and surface water quality using self-organizing map approach. Ecol. Indic. 2019, 102, 633–643. [Google Scholar] [CrossRef]
- Chai, N.; Yi, X.; Xiao, J.; Liu, T.; Liu, Y.; Deng, L.; Jin, Z. Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River. Sci. Total Environ. 2020, 757, 143882. [Google Scholar] [CrossRef]
- Sher, F.; Hanif, K.; Rafey, A.; Khalid, U.; Zafar, A.; Mariam, A.; Lima, E. Removal of micropollutants from municipal wastewater using different types of activated carbons. J. Environ. Manag. 2020, 278, 111302. [Google Scholar] [CrossRef]
- Luo, Z.; Shao, Q.; Zuo, Q.; Cui, Y. Impact of land use and urbanization on river water quality and ecology in a dam dominated basin. J. Hydrol. 2020, 584, 124655. [Google Scholar] [CrossRef]
- Hurtt, G.; Chini, L.; Frolking, S.; Betts, R. Harmonization of land use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117–161. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, L.; Wu, X.; Hou, X.; Zhao, S.; Liu, G. Quantitative evaluation of human activity intensity on the regional ecological impact studies. Acta Ecol. Sin. 2018, 38, 6797–6809. [Google Scholar] [CrossRef]
- Mohan, M.; Kandya, A. Impact of urbanization and land-use/landcover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Sci. Total Environ. 2015, 506–507, 453–465. [Google Scholar] [CrossRef]
- Halpern, B.; Frazier, M.; Potapenko, J.; Casey, K.; Koenig, K.; Longo, C.; Lowndes, J.; Rockwood, R.; Selig, E.; Selkoe, K.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef] [Green Version]
- Krausmann, F.; Erb, K.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauka, C.; Plutzara, C.; Searchinger, T. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 2013, 110, 10324–10329. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Huang, J.; Pontius, R.; Hong, H. New insight into the correlations between land use and water quality in a coastal watershed of China: Does point source pollution weaken it? Sci. Total Environ. 2016, 543, 591–600. [Google Scholar] [CrossRef]
- Hill, M.; Roy, D.; Thompson, K. Hemeroby, urbanity and ruderality: Bioindicators of disturbance and human impact. J. Appl. Ecol. 2002, 39, 708–720. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Jiang, X.; Yu, Z.; Yao, Q. Impacts of human activities on nutrient transport in the yellow river: The role of the water-sediment regulation scheme. Sci. Total Environ. 2017, 592, 161–170. [Google Scholar] [CrossRef]
- Wellmann, T.; Haase, D.; Knapp, S.; Salbach, C.; Selsam, P.; Laush, A. Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecol. Indic. 2018, 85, 190–203. [Google Scholar] [CrossRef]
- Yang, Y.; Song, G. Human disturbance changes based on spatiotemporal heterogeneity of regional ecological vulnerability: A case study of Qiqihaer city, northwestern Songnen Plain, China. J. Clean. Prod. 2021, 291, 125262. [Google Scholar] [CrossRef]
- Walz, U.; Stein, C. Indicators of hemeroby for the monitoring of landscapes in Germany. J. Nat. Conserv. 2014, 2, 279–289. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, L.; Yang, K.; Liu, Q.; Qian, G. Influences of land use on water quality in a reticular river network area: A case study in Shanghai China. Landsc. Urban Plan. 2015, 137, 20–29. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Yang, G.; Sun, X.; Song, Z. Trophic level and heavy metal pollution of Sardinella albella in Liusha Bay, Beibu Gulf of the South China Sea. Mar. Pollut. Bull. 2020, 156, 111204. [Google Scholar] [CrossRef]
- Carlson, R. A trophic state for lakes. Limnol. Oceanogr. 1977, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Li, J.; Li, G.; Li, Y.; Xi, B.; Wu, Y.; Li, C.; Li, W.; Zhang, L. An analysis of the present situation of the trophic state of a typical lake in China and the difference between regions. Acta Hydrobiol. Sin. 2018, 42, 854–864. (In Chinese) [Google Scholar] [CrossRef]
- CCME, Canadian Council of Ministers of the Environment. Canadian Water Quality Guidelines for the Protection of Aquatic Life; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2013.
- Yu, C.; Yin, X.; Li, H.; Yang, Z. A hybrid water-quality-index and grey water footprint assessment approach for comprehensively evaluating water resources utilization considering multiple pollutants. J. Clean. Prod. 2020, 248, 119225. [Google Scholar] [CrossRef]
- Hurley, T.; Sadiq, R.; Mazumder, A. Adaptation and evaluation of the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) for use as an effective tool to characterize drinking source water quality. Water Res. 2012, 46, 3544–3552. [Google Scholar] [CrossRef]
- CNBS, China National Bureau of Statistics. China Statistical Yearbook of 2018. 2018. Available online: http://www.stats.gov.cn (accessed on 2 October 2021).
- Li, Y.; Bi, Y.; Mi, W.; Xie, S.; Ji, L. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. J. Hazard. Mater. 2021, 406, 124337. [Google Scholar] [CrossRef]
- Wang, Y. Urban land and sustainable resource use: Unpacking the countervailing effects of urbanization on water use in China, 1990–2014. Land Use Policy 2020, 90, 104307. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, Y.; Qin, Z.; Huang, L. Evaluating temporal and spatial variation in nitrogen sources along the lower reach of Fenhe River (Shanxi Province, China) using stable isotope and hydrochemical tracers. Water 2018, 10, 231. [Google Scholar] [CrossRef] [Green Version]
- CNBS, China National Bureau of Statistics. China Statistical Yearbook of 2020. 2020. Available online: http://www.stats.gov.cn/tjsj/ndsj/2020/indexeh.htm (accessed on 2 October 2021).
- Jia, Y.; Yu, G.; He, N.; Zhan, X.; Fang, H.; Sheng, W.; Zuo, Y.; Zhang, D.; Wang, Q. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 2014, 4, 3763. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Wei, M.; Ongley, E.; Zicheng, L.; Jingsheng, C. Long-term variations and causal factors in nitrogen and phosphorus transport in the Yellow River, China. Estuar. Coast. Shelf Sci. 2010, 86, 345–351. [Google Scholar] [CrossRef]
- Tang, D.; Liu, X.; Zou, X. An improved method for integrated ecosystem health assessments based on the structure and function of coastal ecosystems: A case study of the Jiangsu coastal area, China. Ecol. Indic. 2018, 84, 82–95. [Google Scholar] [CrossRef]
- Peter, A.; Todd, E.; Heery, L.; Loke, R.; Thurstan, D.; Johan, K.; Christopher, S. Towards an urban marine ecology: Characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. Oikos 2019, 128, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Peng, J.; Liu, Y.; Hu, Y. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Wunder, S.; Bodle, R. Achieving land degradation neutrality in Germany: Implementation process and design of a land use change based indicator. Environ. Sci. Policy 2019, 92, 46–55. [Google Scholar] [CrossRef]
- Yang, Y.; Meng, Z.; Jiao, W. Hydrological and pollution processes in mining area of Fenhe River Basin in China. Environ. Pollut. 2018, 234, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Krasa, J.; Dostal, T.; Jachymova, B.; Bauer, M.; Devaty, J. Soil erosion as a source of sediment and phosphorus in rivers and reservoirs-watershed analyses using WaTEM/SEDEM. Environ. Res. 2019, 171, 470–483. [Google Scholar] [CrossRef]
- Han, X.; Xiao, J.; Wang, L.; Tian, S.; Liu, Y. Identification of areas vulnerable to soil erosion and risk assessment of phosphorus transport in a typical watershed in the Loess Plateau. Sci. Total Environ. 2021, 758, 143661. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, F.; Feng, J.; Lv, J.; Liu, Q.; Nan, F.; Liu, X.; Xu, L.; Xie, S. Spatio-temporal variation and risk assessment of hydrochemical indices in a large diversion project of the Yellow River, northern China, from 2008 to 2017. Environ. Sci. Pollut. Res. 2020, 27, 28438–28448. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, W.; Zheng, Y. Water environment risk assessment for upstream of Fenhe Reservoir. Shanxi Hydrotech. 2013, 189, 53–56. (In Chinese) [Google Scholar]
- Souza, D.; Teixeira, R.; Ostermann, O. Assessing biodiversity loss due to land use with Life Cycle Assessment: Are we there yet? Glob. Chang. Biol. 2015, 21, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Temporal and spatial changes of nutrient content and eutrophication condition in waters of the abandoned yellow river delta. Appl. Ecol. Environ. Res. 2019, 17, 14069–14085. [Google Scholar] [CrossRef]
- Álvarez, X.; Valero, E.; Santos, R.; Varandas, S.; Fernandes, L.; Pacheco, F. Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources. Land Use Policy 2017, 69, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Dang, J.; Zhao, Y.; Qiao, P. Effects of urbanization on water quality and the macrobenthos community structure in the Fenhe River, Shanxi Province, China. J. Chem. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.; Tayyebi, A. Urban expansion and its consumption of high-quality farmland in Beijing, China. Ecol. Indic. 2015, 54, 60–70. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
Watershed | River | Sampling Numbers | Mean Concentrations (mg L−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | TN | COD | Tr (cm) | Chla | Mn | Cu | Zn | F− | Cl− | As | SO42− | NO3− | NH4-N | DO | |||
Yellow River | Fen River | 28 | 0.08 | 8.37 | 4.16 | 33.77 | 0.0350 | 0.0131 | 0.0046 | 0.0070 | 0.71 | 157.31 | 0.0012 | 286.82 | 6.88 | 0.69 | 8.35 |
Yellow River Tributaries | 9 | 0.13 | 8.73 | 2.60 | 32.20 | 0.0340 | 0.0007 | 0.0042 | 0.0010 | 0.61 | 64.60 | 0.0023 | 109.20 | 6.20 | 1.44 | 9.69 | |
Qin River | 7 | 0.02 | 3.84 | 1.72 | 37.69 | 0.0290 | 0.0032 | 0.0025 | 0.0042 | 0.48 | 76.17 | 0.0016 | 209.87 | 2.28 | 0.17 | 11.28 | |
Sushui River | 3 | 0.10 | 8.19 | 8.87 | 44.28 | 0.0352 | 0.0011 | 0.0179 | 0.0015 | 0.66 | 147.70 | 0.0025 | 262.00 | 0.51 | 0.53 | 9.66 | |
Total | 47 | 0.08 | 7.75 | 3.80 | 34.72 | 0.0332 | 0.0101 | 0.0054 | 0.0058 | 0.67 | 140.07 | 0.0015 | 262.37 | 5.81 | 0.75 | 9.13 | |
Hai River | Hutuo River | 10 | 0.06 | 5.57 | 2.34 | 27.22 | 0.0386 | 0.0043 | 0.0030 | 0.0021 | 0.51 | 44.98 | 0.0013 | 182.00 | 3.93 | 0.31 | 9.59 |
Yongding River | 16 | 0.22 | 7.35 | 3.90 | 26.92 | 0.0425 | 0.0190 | 0.0042 | 0.0035 | 0.82 | 125.05 | 0.0024 | 194.57 | 3.16 | 1.15 | 9.77 | |
Zhangwei River | 9 | 0.05 | 3.84 | 3.43 | 30.62 | 0.0414 | 0.0077 | 0.0031 | 0.0173 | 0.50 | 94.68 | 0.0013 | 151.52 | 3.16 | 0.23 | 9.74 | |
Daqing River | 2 | 0.01 | 7.16 | 0.75 | 30.92 | 0.0306 | 0.0412 | 0.0034 | 0.0082 | 0.52 | 98.36 | 0.0014 | 135.80 | 3.02 | 0.03 | 10.77 | |
Total | 37 | 0.13 | 5.98 | 3.26 | 28.06 | 0.0385 | 0.0129 | 0.0036 | 0.0068 | 0.67 | 100.20 | 0.0019 | 180.59 | 3.32 | 0.66 | 9.76 | |
Shanxi Province | 84 | 0.10 | 6.98 | 3.53 | 31.81 | 0.0323 | 0.0113 | 0.0046 | 0.0062 | 0.67 | 123.24 | 0.0016 | 227.84 | 4.76 | 0.70 | 9.41 |
Watershed | River | Watershed Area (km2) | Hemoroby Index | Completely Disturbed | Completely Disturbed Proportion (%) |
---|---|---|---|---|---|
Yellow River | Fen River | 38,014 | 0.6218 | 0.0569 | 9.15 |
Yellow River tributaries | 43,105 | 0.6096 | 0.0231 | 3.79 | |
Qin River | 12,621 | 0.6209 | 0.0479 | 7.72 | |
Sushui River | 5540 | 0.7036 | 0.1074 | 15.27 | |
Hai River | Zhangwei River | 15,713 | 0.6323 | 0.0600 | 9.49 |
Daqing River | 2173 | 0.5832 | 0.0082 | 1.40 | |
Yongding River | 22,279 | 0.6418 | 0.0701 | 10.93 | |
Hutuo River | 17,255 | 0.6074 | 0.0515 | 8.49 |
Watershed | River | TLI | CCME WQI | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Maximum | Minimum | Mean | SD | Maximum | Minimum | ||
Yellow River | Fen River | 50.39 | 7.13 | 60.18 | 35.81 | 59.43 | 17.90 | 100.00 | 27.35 |
Yellow River Tributaries | 48.37 | 7.75 | 61.91 | 39.30 | 54.33 | 14.70 | 77.54 | 31.93 | |
Qin River | 41.67 | 1.34 | 43.10 | 39.60 | 72.15 | 9.71 | 86.75 | 59.68 | |
Sushui River | 55.00 | 4.83 | 60.43 | 48.71 | 54.68 | 17.65 | 74.57 | 40.89 | |
Total | 49.00 | 7.42 | 61.91 | 35.81 | 60.04 | 16.80 | 100.00 | 27.35 | |
Hai River | Hutuo River | 44.97 | 9.39 | 57.22 | 28.38 | 67.24 | 17.91 | 100.00 | 36.27 |
Yongding River | 51.62 | 7.55 | 68.82 | 40.36 | 60.90 | 19.62 | 88.01 | 31.45 | |
Zhangwei River | 47.16 | 3.29 | 53.46 | 41.46 | 76.45 | 18.60 | 100.00 | 41.87 | |
Daqing River | 36.42 | 3.58 | 60.12 | 57.06 | 57.53 | 0.66 | 45.35 | 36.42 | |
Total | 48.24 | 8.05 | 68.82 | 28.38 | 66.44 | 19.21 | 100.00 | 31.45 | |
Shanxi Province | 48.67 | 7.75 | 68.82 | 28.38 | 62.76 | 17.95 | 100.00 | 27.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Li, Y.; Zhang, G.; Bi, Y. Anthropogenic Disturbances Have Contributed to Degradation of River Water Quality in Arid Areas. Water 2021, 13, 3305. https://doi.org/10.3390/w13223305
Ji L, Li Y, Zhang G, Bi Y. Anthropogenic Disturbances Have Contributed to Degradation of River Water Quality in Arid Areas. Water. 2021; 13(22):3305. https://doi.org/10.3390/w13223305
Chicago/Turabian StyleJi, Li, Yuan Li, Guixiang Zhang, and Yonghong Bi. 2021. "Anthropogenic Disturbances Have Contributed to Degradation of River Water Quality in Arid Areas" Water 13, no. 22: 3305. https://doi.org/10.3390/w13223305
APA StyleJi, L., Li, Y., Zhang, G., & Bi, Y. (2021). Anthropogenic Disturbances Have Contributed to Degradation of River Water Quality in Arid Areas. Water, 13(22), 3305. https://doi.org/10.3390/w13223305