Hydraulic and Structural Analysis of Complex Cross-Section Reinforced Concrete Pipes to Improve Sewage Flow in a Combined Sewer System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fundamental Theory of Sewage Flow
2.2. Design Method of a Complex Cross-Section
2.3. Flow Performance Modeling
2.4. Tractive Force Pilot Test
2.5. Structural Strength Test
2.6. Structural Analysis Modeling
3. Results
3.1. Design of a Complex Cross-Section
3.2. Flow Performance in Wet Weather Conditions
3.3. Structural Strength Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- San Francisco. City and County of San Francisco 2030 Sewer System Master Plan. 2009. Available online: https://www.gsweventcenter.com/Draft_SEIR_References/2010_12_SFPUC_TM509.pdf (accessed on 26 October 2021).
- WESD and WCSD (Wastewater Engineering Services Division & Wastewater Collection Systems Division). Collection System Odor Control Master Plan 2017. 2017. Available online: https://www.lacitysan.org/cs/groups/sg_cw/documents/document/y250/mdiw/~edisp/cnt020340.pdf (accessed on 26 October 2021).
- Ji, H.W.; Yoo, S.S. The measures to reduce sewer odor in South Korea through sewer odor reduction system in Los Angeles and San Francisco. J. Korean Soc. Water Wastewater 2018, 32, 445–451. [Google Scholar] [CrossRef]
- Husain, I.A.; Alkhatib, M.A.F.; Jammi, M.S.; Mirghani, M.E.S.; Zainudin, Z.B.; Hoda, A. Problems, control, and treatment of fat, oil, and grease (FOG): A review. J. Oleo Sci. 2014, 63, 747–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, S.M.; Dou, X.; Umbrell, E.R.; Jones, J.S. Storm sewer junction hydraulics and sediment transport. In Proceedings of the WRPMD’99: Preparing for the 21st Century, Tempe, AZ, USA, 6–9 June 1999; pp. 1–11. [Google Scholar]
- Crispino, G.; Pfister, M.; Gisonni, C. Supercritical flow in junction manholes under invert- and obvert-aligned set-ups. J. Hydraul. Res. 2019, 57, 534–546. [Google Scholar] [CrossRef]
- Cho, J.; Song, H. A study of controls and complaints by odor in domestic sewer system. In Proceedings of the 2011 Joint Autumn Conference, Water Wastewater & Korea Society Water Environment, Deajeon, Korea, 2–3 November 2011; pp. 692–693. [Google Scholar]
- Bizier, P. Gravity Sanitary Sewer Design and Construction; American Society of Civil Engineers and Water Environment Federation: Reston, VA, USA, 2007; pp. 139–141. [Google Scholar]
- Beichert, J. Influence of sewer sediments on the overflow load for various combined sewer systems. Water Sci. Technol. 1992, 25, 217–224. [Google Scholar] [CrossRef]
- Ahyerre, M.; Chebbo, G. Identification of in-sewer sources of organic solids contributing to combined sewer overflows. Environ. Technol. 2002, 23, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Korea Construction Standards Center. Korea Construction Standards; Construction Standards for Sanitary Sewer Pipeline. Available online: https://www.kcsc.re.kr/StandardCode/Viewer/3359#title-43 (accessed on 10 November 2021).
- Schladweiler, J.M.; The History of Sanitary Sewer: Pipes-Brick. AZ Water Association, NASSCO, Collection Systems Committee of the Water Environment Federation. 2020. Available online: http://www.sewerhistory.org/photosgraphics/pipes-brick/ (accessed on 29 September 2021).
- ACPA (American Concrete Pipe Association). Concrete Pipe Design Manual; ACPA: Irving, TX, USA, 2011; pp. 83–86. Available online: https://www.concretepipe.org/wp-content/uploads/2014/09/cp-manual.pdf (accessed on 11 November 2021).
- Regueiro-Picallo, M.; Naves, J.; Anta, J.; Puertas, J.; Suárez, J. Experimental and numerical analysis of egg-shaped sewer pipes flow performance. Water 2016, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.F.; Gasiorek, J.M.; Swaffield, J.A. Fluid Mechanics, 3rd ed.; Longman: Harlow, UK, 1995; pp. 460–474. [Google Scholar]
- George, E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery; Wiley: New York, NY, USA, 2005; pp. 27–33. [Google Scholar]
- ANSYS CFX. ANSYS CFX-Solver Theory Guide; ANSYS CFX Release: Canonsburg, PA, USA, 2012; pp. 69–118. [Google Scholar]
- Korean Industrial Standards. 2021. KS F 4402: Vibrated and Rolled Reinforced Concrete Pipe. Available online: https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?pageIndex=1&pageUnit=10&ksNo=KSF4402&tmprKsNo=KSF4402&reformNo=19&menuId=919&topMenuId=502&upperMenuId=503 (accessed on 11 November 2021).
- Hafezolghorani, M.; Hejazi, F.; Vaghei, R.; Jaafar, M.S.B.; Karimzade, K. Simplified damage plasticity model for concrete. Struct. Eng. Int. 2017, 27, 68–78. [Google Scholar] [CrossRef]
- Hwang, T.-J.; Cho, J.-Y.; Lee, K.-H. Gradation curve of aggregate using digital image process. J. Korean Soc. Hazard Mitig. 2010, 10, 31–37. [Google Scholar]
- Watkins, R.K.; Anderson, L.R. Structural Mechanics of Buried Pipes; CRC Press: New York, NY, USA, 2000; pp. 1–28. [Google Scholar]
- Scheperboer, I.C.; Luimes, R.A.; Suiker, A.S.; Bosco, E.; Clemens, F.H.L.R. Experimental-numerical study on the structural failure of concrete sewer pipes. Tunn. Undergr. Space Technol. 2021, 116, 104075. [Google Scholar] [CrossRef]
- Stanić, N.; Jeroen, L.; Theo, S.; François, C. Relating the structural strength of concrete sewer pipes and material properties retrieved from core samples. Struct. Infrastruct. Eng. 2017, 13, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Manica, R. Sediment gravity flows: Study based on experimental simulations. Hydrodyn. Nat. Water Bod. 2012, 1, 263–286. [Google Scholar]
- Crispino, G.; Gisonni, C.; Iervolino, M. Flood hazard assessment: Comparison of 1D and 2D hydraulic models. Int. J. River Basin Manag. 2015, 13, 153–166. [Google Scholar] [CrossRef]
- Parsaie, A.; Najafian, S.; Yonesi, H. Flow discharge estimation in compound open channel using theoretical approaches. Sustain. Water Resour. Manag. 2016, 2, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.W.; Yoo, S.S.; Koo, D.D.; Kang, J.H. Analysis of the flow performance of the complex cross-section module to reduce the sedimentation in a combined sewer pipe. Water 2020, 12, 3291. [Google Scholar] [CrossRef]
- Swamee, P.K.; Bhargava, R.; Sharma, A.K. Noncircular sewer design. J. Environ. Eng. 1987, 113, 824–833. [Google Scholar] [CrossRef]
- Czel, G.; Czigany, T. Analysing fluctuation of material properties of non-circular profile filament wound composite pipes along perimeter of cross-section. Plast. Rubber Comp. 2011, 40, 369–373. [Google Scholar] [CrossRef]
- Ministry of Environment. 2019 Sanitary Sewer Statics. 2021. Available online: https://www.hasudoinfo.or.kr/stat/statRefDetail.do (accessed on 29 September 2021).
- Singh, A.; Adachi, S. Bathtub curves and pipe prioritization based on failure rate. Built Environ. Proj. Asset Manag. 2013, 3, 105–122. [Google Scholar] [CrossRef]
- Mohammadi, M.M.; Najafi, M.; Kermanshachi, S.; Kaushal, V.; Serajiantehrani, R. Factors Influencing the Condition of Sewer Pipes: State-of-the-Art Review. J. Pipe. Syst. Eng. Prac. 2020, 11, 03120002. [Google Scholar] [CrossRef]
450 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 | |
---|---|---|---|---|---|---|---|---|---|---|
Q3 | 0.00829 | 0.00953 | 0.0117 | 0.0157 | 0.0148 | 0.0166 | 0.0135 | 0.0189 | 0.0146 | 0.00982 |
Q2 | 0.00464 | 0.00479 | 0.00638 | 0.00882 | 0.00831 | 0.00910 | 0.00766 | 0.0119 | 0.00730 | 0.00650 |
Q1 | 0.00259 | 0.00234 | 0.00317 | 0.00442 | 0.00366 | 0.00450 | 0.00307 | 0.00650 | 0.00274 | 0.00337 |
Dmain-pipe (mm) | λ*Apipe (mm2) | Dλ (mm) | Dsub-pipe (mm) | Notation |
---|---|---|---|---|
300 | 2954 | 87 | 100 | D300/D100 |
400 | 5253 | 116 | 150 | D400/D150 |
450 | 6648 | 130 | 150 | D450/D150 |
500 | 8207 | 145 | 150 | D500/D150 |
600 | 11,819 | 173 | 200 | D600/D200 |
700 | 16,087 | 202 | 200 | D700/D200 |
800 | 21,011 | 231 | 250 | D800/D250 |
900 | 26,592 | 260 | 300 | D900/D300 |
1000 | 32,830 | 289 | 300 | D1000/D300 |
1100 | 39,724 | 318 | 350 | D1100/D350 |
1200 | 47,275 | 347 | 350 | D1200/D350 |
1300 | 55,482 | 376 | 400 | D1300/D400 |
Case No. | Slope | Manning’s Roughness Coefficient (s/m1/3) | Discharge (m3/s) | Pipe | Average Velocity (m/s) | Water Level (mm) | Average Shear Stress (N/m2) |
---|---|---|---|---|---|---|---|
1 | 0.005 | 0.01 | 0.007 | Main pipe | 0.806 | 51 | 1.58 |
Sub-pipe | 0.868 | 75 | 1.84 | ||||
2 | 0.01 | 0.01 | 0.0099 | Main pipe | 1.168 | 51 | 3.15 |
Sub-pipe | 1.261 | 75 | 3.68 | ||||
3 | 0.015 | 0.01 | 0.01212 | Main pipe | 1.431 | 51 | 4.73 |
Sub-pipe | 1.538 | 75 | 5.51 | ||||
4 | 0.005 | 0.013 | 0.005384 | Main pipe | 0.665 | 51 | 1.58 |
Sub-pipe | 0.745 | 75 | 1.84 | ||||
5 | 0.01 | 0.013 | 0.007615 | Main pipe | 0.953 | 51 | 3.15 |
Sub-pipe | 1.058 | 75 | 3.68 | ||||
6 | 0.01 | 0.01 | 0.00475 | Main pipe | 0.906 | 35.7 | 2.25 |
Sub-pipe | 1.049 | 50 | 2.74 |
Test Case | Q (L/s) | Uav (m/s) | Rh (m) | Re | |
---|---|---|---|---|---|
Main pipe | 0.423 | 0.371 | 0.0089 | 3285 | 0.65 |
Sub-pipe | 0.412 | 0.436 | 0.0113 | 4902 | 0.829 |
Test Content | Test-1 | Test-2 |
---|---|---|
Crack load | 50 kN/m | 57.8 kN/m |
Failure load | 54 kN/m | 67.1 kN/m |
Contents | Model 1 | Model 2 |
---|---|---|
Line load (boundary condition) | 30 kN/m | 67 kN/m |
Maximum tensile stress | 2.21 MPa | 4.54 MPa |
Maximum compressive stress | 3.28 MPa | 8.13 MPa |
Maximum displacement | 0.081 mm | 0.19 mm |
Damage | - | Tensile damage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.W.; Kang, J.-H.; Koo, D.D.; Yoo, S.S. Hydraulic and Structural Analysis of Complex Cross-Section Reinforced Concrete Pipes to Improve Sewage Flow in a Combined Sewer System. Water 2021, 13, 3304. https://doi.org/10.3390/w13223304
Ji HW, Kang J-H, Koo DD, Yoo SS. Hydraulic and Structural Analysis of Complex Cross-Section Reinforced Concrete Pipes to Improve Sewage Flow in a Combined Sewer System. Water. 2021; 13(22):3304. https://doi.org/10.3390/w13223304
Chicago/Turabian StyleJi, Hyon Wook, Jeong-Hee Kang, Dan Daehyun Koo, and Sung Soo Yoo. 2021. "Hydraulic and Structural Analysis of Complex Cross-Section Reinforced Concrete Pipes to Improve Sewage Flow in a Combined Sewer System" Water 13, no. 22: 3304. https://doi.org/10.3390/w13223304
APA StyleJi, H. W., Kang, J. -H., Koo, D. D., & Yoo, S. S. (2021). Hydraulic and Structural Analysis of Complex Cross-Section Reinforced Concrete Pipes to Improve Sewage Flow in a Combined Sewer System. Water, 13(22), 3304. https://doi.org/10.3390/w13223304