Effect of Plant Species on the Performance and Bacteria Density Profile in Vertical Flow Constructed Wetlands for Domestic Wastewater Treatment in a Tropical Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Domestic Wastewater Characteristics
2.2. Experimental Setup
2.3. Plant Species
2.4. Operation
2.5. Water Sampling
2.6. Substrate Sampling and Microbial Biomass Analysis
2.7. Analytical Methods
2.8. Statistical Analysis
3. Results
3.1. Plant Growth Response
3.2. Wastewater Treatment Performance
3.2.1. Assessment of Physical Parameters
3.2.2. Assessment of Chemical Parameters
3.3. Bacteria Densities Measurements
4. Discussion
4.1. Plant Growth Response
4.2. VFCWs Performance
4.3. Bacteria Density in VFCWs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vymazal, J. Constructed wetlands for wastewater treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Stefanakis, A.I.; Akratos, C.S.; Tsihrintzis, V.A. Vertical Flow Constructed Wetlands: Eco-Engineering Systems for Wastewater and Sludge Treatment, 1st ed.; Elsevier Publishing: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Dotro, G.; Langergraber, G.; Molle, P.; Nivala, J.; Puigagut, J.; Stein, O.R.; von Sperling, M. Treatment Wetlands, 1st ed.; IWA Publishing: London, UK, 2017. [Google Scholar]
- Stefanakis, A.I.; Calheiros, C.S.C.; Nikolaou, I. Nature-based solutions as a tool in the new circular economic model for climate change adaptation. Circ. Econ. Sust. 2021, 1, 303–318. [Google Scholar] [CrossRef]
- Stefanakis, A.I. The Role of Constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.C.; Silva, L.; Albuquerque, A.; Simões, R.; Stefanakis, A.I. Investigation of lab-scale horizontal subsurface flow constructed wetlands treating industrial cork boiling wastewater. Chemosphere 2018, 207, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, S.; Torrealba, G.; Lameda-Cuicas, E.; Molina-Quintero, L.; Stefanakis, A.I.; Pire-Sierra, M.C. Investigation of pilot-scale Constructed Wetlands treating simulated pre-treated tannery wastewater under tropical climate. Chemosphere 2019, 234, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Gholipour, A.; Zahabi, H.; Stefanakis, A.I. A novel pilot and full-scale constructed wetland study for glass industry wastewater treatment. Chemosphere 2020, 247, 125966. [Google Scholar] [CrossRef] [PubMed]
- Stefanakis, A.I.; Prigent, S.; Breuer, R. Integrated produced water management in a desert oilfield using wetland technology and innovative reuse practices. In Constructed Wetlands for Industrial Wastewater Treatment, 1st ed.; Stefanakis, A.I., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2018; pp. 25–42. [Google Scholar]
- Buehler, D.; Antenen, N.; Frei, M.; Koller, C.; Rousseau, D.P.L.; Schoenborn, A.; Junge, R. Towards water and energy self-sufficiency: A closed-loop, solar-driven, low-tech laundry pilot facility (LaundReCycle) for the reuse of laundry wastewater. Circ. Econ. Sustain. 2021, 1, 1037–1051. [Google Scholar] [CrossRef]
- Pineda-Martos, R.; Calheiros, C.S.C. Nature-Based Solutions in Cities—Contribution of the Portuguese National Association of Green Roofs to Urban Circularity. Circ. Econ. Sustain. 2021, 1, 1019–1035. [Google Scholar] [CrossRef]
- Catalano, C.; Meslec, M.; Boileau, J.; Guarino, R.; Aurich, I.; Baumann, N.; Chartier, F.; Dalix, P.; Deramond, S.; Laube, P.; et al. Smart Sustainable Cities of the New Millennium: Towards Design for Nature. Circ. Econ. Sustain. 2021, 1, 1053–1086. [Google Scholar] [CrossRef]
- Nikolaou, I.E.; Jones, N.; Stefanakis, A.I. Circular Economy and7 Sustainability: The Past, the Present and the Future Directions. Circ. Econ. Sustain. 2021, 1, 1–20. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Nikolaou, I.E. Circular Economy and Sustainability, 1st ed.; Elsevier Publishing: Amsterdam, The Netherlands, 2021; Volume 2. [Google Scholar]
- Nivala, J.; Wallace, S.; Headley, T. Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol. Eng. 2013, 61, 544–554. [Google Scholar] [CrossRef]
- Al-Wahaibi, B.; Jafary, T.; Al-Mamun, A.; Baawain, M.S.; Aghbashio, M.; Tabatabaei, M.; Stefanakis, A.I. Operational modifications of a full-scale experimental vertical flow constructed wetland with effluent recirculation to optimize total nitrogen removal. J. Clean. Prod. 2021, 296, 126558. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Stefanakis, A.I.; Tsihrintzis, V.A. Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale Vertical Flow Constructed Wetlands. Chem. Eng. J. 2012, 181–182, 416–430. [Google Scholar] [CrossRef]
- Garcia, J.; Rousseau, D.P.L.; Morato, J.; Lesage, E.; Matamoros, V.; Bayona, J.M. Contaminant removal process in subsurface-flow constructed wetlands: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 561–661. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Kumar, S.; Sharma, K. Constructed wetlands: An approach for waste-water treatment. Elixir Pollut. 2011, 37, 666–3672. [Google Scholar]
- Stefanakis, A.I.; Akratos, C.S. Removal of pathogenic bacteria in constructed wetlands: Mechanisms and efficiency. In Phytoremediation, 1st ed.; Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L., Eds.; Springer: Cham, Switzerland, 2016; Volume 4, pp. 327–346. [Google Scholar]
- Stottmeister, U.; Wiener, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.A.; Moormann, H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Zhang, J.; Li, P.; Zhang, J.; Xie, H.; Zhang, B. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol. Eng. 2011, 37, 560–568. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Wei, R.; Liang, S.; Li, C.; Xie, H. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes. Environ. Sci. Pollut. Res. 2013, 20, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Schultze-Nobre, L.; Wiessner, A.; Bartsch, C.; Paschke, H.; Stefanakis, A.I.; Aylward, L.A.; Kuschk, P. Removal of dimethylphenols and ammonium in laboratory-scale horizontal subsurface flow Constructed Wetlands. Eng. Life Sci. 2017, 17, 1224–1233. [Google Scholar] [CrossRef] [Green Version]
- Truu, M.; Juhanson, J.; Truu, J. Microbial biomass, activity and community composition in constructed wetlands. Sci. Total Environ. 2009, 407, 3958–3971. [Google Scholar] [CrossRef]
- Weber, K.P.; Gagnon, V. Microbiology in treatment wetlands. Sustain. Sanit. Pract. 2014, 18, 25–30. [Google Scholar]
- Wang, Q.; Xie, H.; Ngo, H.H.; Guo, W.; Zhang, J.; Liu, C.; Liang, S.; Hu, Z.; Yang, Z.; Zhao, C. Microbial abundance and community in subsurface flow constructed wetland microcosms: Role of plant presence. Environ. Sci. Pollut. Res. 2016, 23, 4036–4045. [Google Scholar] [CrossRef] [PubMed]
- Puigagut, J.; Salvadó, H.; García, D.; Granes, F.; García, J. Comparison of microfauna communities in full scale subsurface flow constructed wetlands used as secondary and tertiary treatment. Water Res. 2007, 41, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.M.; Liu, Y.; Ng, W.J.; Tan, S.K. Application of constructed wetlands for wastewater treatment in developing countries—A review of recent developments (2000–2013). J. Environ. Manag. 2014, 141, 116–131. [Google Scholar] [CrossRef]
- Varma, M.; Gupta, A.K.; Ghosal, P.S.; Majumder, A. A review on performance of constructed wetlands in tropical and cold climate: Insights of mechanism, role of influencing factors, and system modification in low temperature. Sci. Total Environ. 2021, 755, 142540. [Google Scholar] [CrossRef] [PubMed]
- Haddis, A.; Van der Bruggen, B.; Smets, I. Constructed wetlands as nature-based solutions in removing organic pollutants from wastewater under irregular flow conditions in a tropical climate. Ecohydrol. Hydrobiol. 2020, 20, 38–47. [Google Scholar] [CrossRef]
- Stefanakis, A.I. Constructed wetlands for sustainable wastewater treatment in hot and arid climates: Opportunities, challenges and case studies in the Middle East. Water 2020, 12, 1665. [Google Scholar] [CrossRef]
- Coulibaly, L.; Kouakou, J.; Savané, I.; Gourène, G. Domestic wastewater treatment with a vertical completely drained pilot scale constructed wetland planted with Amaranthus hybridus. Afr. J. Biotechnol. 2008, 7, 2656–2664. [Google Scholar]
- Coulibaly, L.; Savané, I.; Gourene, G. Domestic wastewater treatment with a vertical completely drained pilot scale constructed wetland planted with Corchorus oliterius. Afr. J. Agric. Res. 2008, 3, 587–596. [Google Scholar]
- Ouattara, P.J.-M.; Coulibaly, L.; Manizan, P.; Gourène, G. Traitement des eaux résiduaires urbaines par un marais artificiel à drainage vertical planté avec Panicum maximum sous climat tropical. Eur. J. Sci. Res. 2008, 23, 25–40. [Google Scholar]
- Rodgers, M.; Lambe, A.; Xiao, L. Carbon and nitrogen removal using a novel horizontal flow biofilm system. Process Biochem. 2006, 41, 2270–2275. [Google Scholar] [CrossRef]
- Healy, M.G.; Burke, P.; Rodgers, M. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment. J. Environ. Sci. Health 2010, 45, 1635–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillai, J.S.; Nair, A.N.B. Performance of vertical flow constructed wetlands planted with indigenous species for decentralized wastewater treatment and biomass production in Kerala, India. Nat. Environ. Pollut. Technol. 2021, 20, 541–550. [Google Scholar] [CrossRef]
- Flores, T.A.; Setterfield, S.A.; Douglas, M.M. Seedling recruitment of the exotic grass Andropogon gayanus (Poaceae) in northern Australia. Aust. J. Bot. 2005, 53, 243–249. [Google Scholar] [CrossRef]
- Joceline, S.B.; Kone, M.; Yacouba, O.; Arsene, Y.J. Planted sludge drying beds in treatment of faecal sludge from Ouagadougou: Case of two local plant species. J. Water Resour. Prot. 2016, 8, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Milani, M.; Marzo, A.; Toscano, A.; Consoli, S.; Cirelli, G.L.; Ventura, D.; Barbagallo, S. Evapotranspiration from horizontal subsurface flow constructed wetlands planted with different perennial plant species. Water 2019, 11, 2159. [Google Scholar] [CrossRef] [Green Version]
- Panja, S.; Sarkar, D.; Zhang, Z.; Datta, R. Removal of antibiotics and nutrients by vetiver grass (Chrysopogon zizanioides) from a plug flow reactor based constructed wetland model. Toxics 2021, 9, 84. [Google Scholar] [CrossRef]
- Barbera, A.C.; Borin, M.; Cirelli, G.L.; Toscano, A.L.; Maucieri, C. Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species. Environ. Sci. Pollut. Res. 2015, 22, 2372–2383. [Google Scholar] [CrossRef]
- Fasani, E.; DalCorso, G.; Zerminiani, A.; Ferrarese, A.; Campostrini, P.; Furini, A. Phytoremediatory efficiency of Chrysopogon zizanioides in the treatment of landfill leachate: A case study. Environ. Sci. Pollut. Res. 2019, 26, 10057–10069. [Google Scholar] [CrossRef] [PubMed]
- Ngoutane Pare, M.N.; Koné, D.; Kengne, I.M.; Dongo, K.; Akoa, A. Nutritional potential of Echinochloa pyramidalis (Lam.) Hitchc. & chase, a forage plant used in constructed wetlands treatment of faecal sludge and wastewater. Afr. J. Agric. Res. 2011, 6, 4397–4408. [Google Scholar]
- Kengne, I.M.; Kengne, E.S.; Akoa, A.; Bemmo, N.; Dodane, P.-H.; Koné, D. Vertical-flow constructed wetlands as an emerging solution for faecal sludge dewatering in developing countries. J. Water Sanit. Hyg. Dev. 2011, 1, 13–19. [Google Scholar] [CrossRef]
- Perera, A.N.F.; Perera, E.R.K. Nutritive value and ensiling characteristics of Guatemala grass harvested at different stages of maturity. J. Nat. Sci. Found. Sri Lanka 1994, 22, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Sirianuntapiboon, S.; Jitvimolnimit, S. Effect of plantation pattern on the efficiency of subsurface flow constructed wetland (sfcw) for sewage treatment. Afr. J. Agric. Res. 2007, 2, 447–454. [Google Scholar]
- ISO. International Standardization Organization (ISO) 6222: Water Quality—Enumeration of Culturable Micro-Organisms-Colony Count by Inoculation in a Nutrient Agar Culture Medium, 2nd ed.; ISO: Geneve, Switzerland, 1999. [Google Scholar]
- ISO. International Standardization Organization (ISO) 10523: Water Quality-Determination of pH-Analytical Measurement, 2nd ed.; ISO: Geneve, Switzerland, 2008. [Google Scholar]
- ISO. International Standardization Organization (ISO) 5814: Water Quality-Determination of Dissolved Oxygen—Electrochemical Probe Method, 3rd ed.; ISO: Geneve, Switzerland, 2012. [Google Scholar]
- ISO. International Standardization Organization (ISO) 6060/2: Water Quality-Determination of Chemical Oxygen Demand-Potassium Dichromate Method, 2nd ed.; ISO: Geneve, Switzerland, 1989. [Google Scholar]
- ISO. International Standardization Organization (ISO) 5815: Water Quality—Determination of Biochemical Oxygen Demand after n Days (BODn)—Part 1: Dilution and Seeding Method with Allylthiourea Addition, 1st ed.; ISO: Geneve, Switzerland, 2003. [Google Scholar]
- ISO. International Standardization Organization (ISO) 5663: Water Quality-Determination of Kjedahl Nitrogen-Method after Mineralization with Selenium, 1st ed.; ISO: Geneve, Switzerland, 1984. [Google Scholar]
- ISO. International Standardization Organization (ISO) 7150/1: Water Quality-Determination of Ammonium—Part 1 Manual Spectrometric Method, 1st ed.; ISO: Geneve, Switzerland, 1984. [Google Scholar]
- ISO. International Standardization Organization (ISO) 7890/3: Water Quality-Determination of Nitrate—Part 3: Spectrometric Method Using Sulfosalicylic Acid, 1st ed.; ISO: Geneve, Switzerland, 1988. [Google Scholar]
- ISO. International Standardization Organization (ISO) 6878: Water Quality-Determination of Phosphorus—Ammonium Molybdate Spectrometric Method, 2nd ed.; ISO: Geneve, Switzerland, 2004. [Google Scholar]
- Kengne, E.S.; Kengne, I.M.; Nzouebet, W.A.L.; Akoa, A.; Hung, N.V.; Strande, L. Performance of vertical flow constructed wetlands for faecal sludge drying bed leachate: Effect of hydraulic loading. Ecol. Eng. 2014, 71, 384–393. [Google Scholar] [CrossRef]
- Pillai, J.S.; Vijayan, N. wastewater treatment: An ecological sanitation approach in a constructed wetland. International Journal of Innovative. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 5193–5204. [Google Scholar]
- Xu, Q.; Hunag, Z.; Wang, X.; Cui, L. Pennisetum sinese Roxb and Pennisetum purpureum Schum. as vertical-flow constructed wetland vegetation for removal of N and P from domestic sewage. Ecol. Eng. 2015, 83, 120–124. [Google Scholar] [CrossRef]
- Gray, J.R. The Genus Tripsacum L. (Gramineae): Taxonomy and Chemosystematics. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 1974. [Google Scholar]
- Almeida, A.; Carvalho, F.; Imaginário, M.J.; Castanheira, I.; Prazeres, A.R.; Ribeiro, C. Nitrate removal in vertical flow constructed wetland planted with Vetiveria zizanioides: Effect of hydraulic load. Ecol. Eng. 2017, 99, 535–542. [Google Scholar] [CrossRef]
- Kengne, I.M.; Akoa, A.; Soh, E.K.; Tsama, V.; Ngoutane, M.M.; Dodane, P.H.; Kone, D. Effects of faecal sludge application on growth characteristics and chemical composition of Echinochloa pyramidalis (Lam.) Hitch. and Chase and Cyperus papyrus L. Ecol. Eng. 2008, 34, 233–242. [Google Scholar] [CrossRef]
- Koné, M.; Zongo, I.; Bonou, L.; Koulidiati, J.; Joly, P.; Bouvet, Y.; Sodre, S. Traitement d’eaux résiduaires urbaines par filtres plantés à flux vertical sous climat Soudano-Sahélien. Int. J. Biol. Chem. Sci. 2011, 5, 217–231. [Google Scholar] [CrossRef]
- Wegner, L.H. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions. AIMS Biophys. 2017, 4, 192–209. [Google Scholar] [CrossRef]
- Pérez, M.M.; Hernández, J.M.; Bossens, J.; Jiménez, T.; Rosa, E.; Tack, F. Vertical flow constructed wetlands: Kinetics of nutrient and organic matter removal. Water Sci. Technol. 2014, 70, 76–81. [Google Scholar] [CrossRef]
- Kadlec, R.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press, Taylor & Francis, Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Gomes, A.C.; Silva, L.; Albuquerque, A.; Simões, R.; Stefanakis, A.I. Treatment of cork boiling wastewater using a horizontal subsurface flow constructed wetland combined with ozonation. Chemosphere 2020, 260, 127598. [Google Scholar] [CrossRef]
- Gholipour, A.; Stefanakis, A.I. A full-scale anaerobic baffled reactor and hybrid constructed wetland for university dormitory wastewater treatment and reuse in an arid and warm climate. Ecol. Eng. 2021, 170, 106360. [Google Scholar] [CrossRef]
- Morvannou, A.; Forquet, N.; Michel, S.; Troesch, S.; Molle, P. Treatment performances of French constructed wetlands: Results from a database collected over the last 30 years. Water Sci. Technol. 2015, 71, 1333–1339. [Google Scholar] [CrossRef] [Green Version]
- Ujang, F.A.; Roslan, A.M.; Osman, N.A.; Norman, A.; Idris, J.; Farid, M.A.A.; Halmi, M.I.E.; Gozan, M.; Hassan, M.A. Removal behaviour of residual pollutants from biologically treated palm oil mill effluent by Pennisetum purpureum in constructed wetland. Sci. Rep. 2021, 11, 18257. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, B.P.; Shi, Y.Z.; Pang, Z.Q. Advanced wastewater treatment by integrated vertical flow constructed wetland with vetiveria zizanioides in north China. Procedia Earth Planet Sci. 2009, 1, 1258–1262. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.; Ribeiro, C.; Carvalho, F.; Durao, A.; Bugajski, P.; Kurek, K.; Pochwatka, P.; Jóźwiakowski, K. Phytoremediation potential of Vetiveria zizanioides and Oryza sativa to nitrate and organic substance removal in vertical flow constructed wetland systems. Ecol. Eng. 2019, 138, 19–27. [Google Scholar] [CrossRef]
- Badejo, A.A.; Omole, D.O.; Ndambuki, J.M. Municipal wastewater management using Vetiveria zizanioides planted in vertical flow constructed wetland. Appl. Water Sci. 2018, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Wang, P.; Zhang, F.; Wang, L. The influence of the outlet position and substrate on the nitrogen purification of vertical flow constructed wetlands. IOP Conf. Ser. Earth Environ. Sci. 2020, 601, 012048. [Google Scholar] [CrossRef]
- Nivala, J.; Abdallat, G.; Aubron, T.; Al-Zreiqat, I.; Abbassi, B.; Wu, G.-M.; van Afferden, M.; Mueller, R.A. Vertical flow constructed wetlands for decentralized wastewater treatment in Jordan: Optimization of total nitrogen removal. Sci. Total Environ. 2019, 671, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Molle, P.; Latune, R.L.; Riegel, G.; Esser, D.; Mangeot, L. French vertical-flow constructed wetland design: Adaptations for tropical climates. Water Sci. Technol. 2015, 71, 1516–1523. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Liang, S.; Zhang, B.; Zhang, J. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. Environ. Sci. Pollut. Res. 2013, 20, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hu, Y.; Xie, H.; Yang, Z. Constructed Wetlands: A review on the role of radial oxygen loss in the rhizosphere by macrophytes. Water 2018, 10, 678. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Piwpuan, N.; Arias, C.A.; Headley, T.; Brix, H. Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems? Ecol. Eng. 2013, 61, 555–563. [Google Scholar] [CrossRef]
- Hatano, K.; Trettin, C.C.; House, C.H.; Wollum, A.G., II. Microbial populations and decomposition activity in three subsurface flow constructed wetlands. In Constructed Wetlands for Water Quality Improvement, 1st ed.; Moshiri, G.A., Ed.; Lewis Publishers: London, UK, 1993; pp. 541–547. [Google Scholar]
- Münch, C.; Kuschk, P.; Roske, I. Root stimulated nitrogen removal: Only a local effect or important for water treatment? Water Sci. Technol. 2005, 51, 85–192. [Google Scholar] [CrossRef]
- Gagnon, V.; Chazarenc, F.; Comeau, Y.; Brisson, J. Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Sci. Technol. 2007, 56, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; He, F.; Liping, Z.; Wang, Y.; Wu, Z. Characteristics of the microbial communities in the integrated vertical-flow constructed wetlands. J. Environ. Sci. 2009, 21, 1261–1267. [Google Scholar] [CrossRef]
- Hua, G.; Cheng, Y.; Kong, J.; Li, M.; Zhao, Z. High-throughput sequencing analysis of bacterial community spatiotemporal distribution in response to clogging in vertical flow constructed wetlands. Bioresour. Technol. 2018, 248B, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Molle, P. French vertical flow constructed wetlands: A need of a better understanding of the role of the deposit layer. Water Sci. Technol. 2014, 69, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Ouattara, P.J.-M.; Coulibaly, L.; Tiho, S.; Gourene, G. Comparison of macrofauna communities in sediments of the beds of vertical flow constructed wetlands planted with Panicum maximum (Jacq.) treating domestic wastewater. Ecol. Eng. 2009, 35, 1237–1242. [Google Scholar] [CrossRef]
- Ouattara, P.J.-M.; Coulibaly, L.; Tiho, S.; Ouattara, A.; Gourene, G. Panicum maximum (Jacq.) density effect upon macrofauna structure in sediments of pilot-scale vertical flow constructed wetlands treating domestic wastewater. Ecol. Eng. 2011, 37, 217–223. [Google Scholar] [CrossRef]
- Darajeh, N.; Idris, A.; Masoumi, H.R.F.; Nourani, A.; Truong, P.; Sairi, N.A. Modeling BOD and COD removal from palm oil mill secondary effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. J. Environ. Manag. 2016, 181, 343–352. [Google Scholar] [CrossRef] [PubMed]
Chemical | Concentration (mg/g) |
---|---|
Glucose | 200 |
Starch | 200 |
Yeast | 40 |
Milk powder | 120 |
Urea | 30 |
NH4Cl | 70 |
KH2PO4 | 80 |
NaHCO3 | 200 |
MgSO4; 7H2O | 50 |
FeSO4; 7H2O | 2 |
MnSO4; H2O | 2 |
CaCl2; 6H2O | 3 |
Bentonite | 60 |
Plant Species | Aboveground Biomass (kg/m²) | Stumps Diameter (cm) |
---|---|---|
A. gayanus | 2.6 a ± 1.8 | 8.6 a ± 3.6 |
C. zizanioides | 1.8 a ± 0.7 | 10.7 a ± 4.2 |
E. pyramidalis | 8.3 b ± 4.6 | 12.1 a ± 5.5 |
P. purpureum | 15.2 b ± 0.7 | 21.3 a ± 9.5 |
T. laxum | 13.1 b ± 2.3 | 16.4 a ± 6.7 |
Parameter | Inlet | Outlet | |||||
---|---|---|---|---|---|---|---|
T. laxum | A. gayanus | C. zizanioides | E. pyramidalis | P. purpureum | Unplanted | ||
pH | 6.81 a ± 0.1 | 7.17 cb ± 0.3 | 6.92 a ± 0.3 | 7.05 c ± 0.3 | 6.93 a ± 0.3 | 7.06 c ± 0.2 | 7.33 b ± 0.3 |
DO (mg/L) | 2.13 a ± 0.6 | 7.53 b ±1.6 | 6.50 c ± 0.8 | 6.70 c ± 1 | 6.63 c ± 1 | 7.24 b ± 1.1 | 5.41 d ± 0.9 |
Volume (L) | 80 a | 55.6 b ± 3.8 | 60.3 c ± 3 | 62.2 d ± 3.6 | 58.6 e ± 5.8 | 54.2 b ± 4.3 | 72.4 f ± 1.9 |
Bed | COD | BOD5 | TN | NH4-N | NO3-N | PO4-P | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/L | % | mg/L | % | mg/L | % | mg/L | % | mg/L | % | mg/L | % | ||
Inlet | Aver | 611.8 a | - | 369.8 a | - | 41.4 a | - | 33.4 a | - | 1.8 a | - | 7.4 a | - |
Max | 623.3 | - | 373.8 | - | 44.5 | - | 35 | - | 2 | - | 7.9 | - | |
Min | 535 | - | 356.1 | - | 37.6 | - | 31 | - | 1.1 | - | 6.8 | - | |
T. laxum | Aver | 48.7b c | 94.5 a | 14.7 b | 97.2 a | 11b d | 81.4 ac | 9 bc | 81.3 a | 1.36 a | 24.3 a | 0.6 b | 94.6 a |
Max | 67 | 97.2 | 19.2 | 97.9 | 17.2 | 94.9 | 14 | 94.1 | 7.5 | 96.4 | 2 | 99.9 | |
Min | 27.3 | 92.5 | 11.5 | 95.8 | 3.3 | 69.2 | 2.4 | 77.2 | 0.1 | n | 0.01 | 81.7 | |
A. gayanus | Aver | 73.9b c | 90.9 b | 23.3 c | 95.2 b | 12.8 bc | 76.3 ab | 9.6 bc | 78.2 ab | 4.4 b | n | 2 c | 79.9 b |
Max | 121.4 | 93.8 | 30.7 | 96.7 | 20.1 | 94.6 | 15.3 | 94.8 | 12.7 | 38.2 | 4.1 | 95.3 | |
Min | 52.8 | 85.6 | 16.3 | 93.4 | 3.2 | 61 | 2.3 | 75.1 | 1.2 | n | 0.5 | 61 | |
C. zizanioides | Aver | 63.4 b | 91.9 c | 21.8 c | 95.4 b | 13.6 c | 74.3 b | 10.2 c | 76 b | 4.3 b | n | 2.1 c | 77.4 b |
Max | 75.8 | 93.7 | 30.7 | 97.5 | 20.7 | 88.5 | 17.3 | 91.2 | 9.4 | 85.4 | 3.6 | 86.3 | |
Min | 53.2 | 89.8 | 11.5 | 93 | 6.2 | 57.4 | 3.6 | 72.2 | 0.3 | n | 1.4 | 61.1 | |
E. pyramidalis | Aver | 55.3 bc | 93.4 d | 18.4 d | 96.4 c | 13.3 b | 76.1 b | 9.8 bc | 78.4 ab | 4 b | n | 1.7 c | 82.6 b |
Max | 64.2 | 95.2 | 24 | 98.4 | 23.5 | 93.3 | 18.6 | 94.4 | 11.8 | 94.8 | 4.1 | 99.6 | |
Min | 39.7 | 91.2 | 7.7 | 94.2 | 3.6 | 58.3 | 2.5 | 71.3 | 0.1 | n | 0.04 | 62.5 | |
P. purpureum | Aver | 36.7 c | 95.9 e | 8.0 e | 98.5 d | 9.6 d | 84 c | 7.8 b | 84 a | 0.8 c | 66.8 b | 0.3 d | 96.9 c |
Max | 48.1 | 97 | 14.4 | 99.2 | 17.3 | 98.5 | 14.6 | 98.2 | 2.4 | 96.8 | 1.7 | 99.7 | |
Min | 28.84 | 93.5 | 4.8 | 96.8 | 1 | 70.8 | 0.7 | 75.4 | 0.1 | n | 0.03 | 81 | |
Unplanted | Aver | 150.2 d | 77.7 f | 43.8 f | 89.3 e | 19.4 e | 57.3 d | 13.5 d | 63.3 c | 5.1 b | n | 3.8 e | 53.3 d |
Max | 221.4 | 83.5 | 52.8 | 93.8 | 34.1 | 74.8 | 18.8 | 77.3 | 9 | 45 | 4.7 | 66.7 | |
Min | 110.4 | 65.5 | 25.9 | 87.2 | 12.5 | 24.4 | 8.6 | 49.1 | 0.9 | n | 2.8 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahui, F.M.; Ouattara, J.-M.P.; Kamagaté, M.; Coulibaly, L.; Stefanakis, A.I. Effect of Plant Species on the Performance and Bacteria Density Profile in Vertical Flow Constructed Wetlands for Domestic Wastewater Treatment in a Tropical Climate. Water 2021, 13, 3485. https://doi.org/10.3390/w13243485
Zahui FM, Ouattara J-MP, Kamagaté M, Coulibaly L, Stefanakis AI. Effect of Plant Species on the Performance and Bacteria Density Profile in Vertical Flow Constructed Wetlands for Domestic Wastewater Treatment in a Tropical Climate. Water. 2021; 13(24):3485. https://doi.org/10.3390/w13243485
Chicago/Turabian StyleZahui, Franck Michaël, Jean-Marie Pétémanagnan Ouattara, Mahamadou Kamagaté, Lacina Coulibaly, and Alexandros I. Stefanakis. 2021. "Effect of Plant Species on the Performance and Bacteria Density Profile in Vertical Flow Constructed Wetlands for Domestic Wastewater Treatment in a Tropical Climate" Water 13, no. 24: 3485. https://doi.org/10.3390/w13243485
APA StyleZahui, F. M., Ouattara, J. -M. P., Kamagaté, M., Coulibaly, L., & Stefanakis, A. I. (2021). Effect of Plant Species on the Performance and Bacteria Density Profile in Vertical Flow Constructed Wetlands for Domestic Wastewater Treatment in a Tropical Climate. Water, 13(24), 3485. https://doi.org/10.3390/w13243485