Effect of Shallow-Buried High-Intensity Mining on Soil Water Content in Ningtiaota Minefield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey Lines and Sampling Points Layout
2.3. Sampling Method
2.4. GPR Detection Principle (Wave Velocity Calibration Method)
2.5. SWC Calculation Methods
2.5.1. Topp Empirical Model (1980)
2.5.2. Empirical Models Using the Refractive Index
2.5.3. Roth Electromagnetic Mixing Model (1990)
2.5.4. Roth Empirical Model (1992)
2.5.5. Gravimetric Method
2.6. Error Analysis
3. Results and Discussion
3.1. Comparative Analysis of SWC Calculation Methods
3.2. Variation in Shallow SWC before and after Mining
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.X.; Zhao, H.; Yin, P.C.; Bu, N.S.; Li, G. Impact of Underground Coal Mining on Regional Landscape Pattern Change Based on Life Cycle: A Case Study in Peixian, China. Pol. J. Environ. Stud. 2019, 28, 4455–4465. [Google Scholar] [CrossRef]
- Cui, F.; Du, Y.F.; Chen, B.P.; Zhao, Y.X.; Zhou, Y.Q. Variation in shallow sandy loam porosity under the influence of shallow coal seam mining in north-west China. Energy Explor. Exploit. 2020, 38, 1349–1366. [Google Scholar] [CrossRef]
- Bi, Y.; Xiao, L.; Guo, C.; Christie, P. Revegetation type drives rhizosphere arbuscular mycorrhizal fungi and soil organic carbon fractions in the mining subsidence area of northwest China. Catena 2020, 195, 104791. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, K.; Wang, J. Effect of different inoculation treatments on AM fungal communities and the sustainability of soil remediation in Daliuta coal mining subsidence area in northwest China. Appl. Soil Ecol. 2018, 132, 107–113. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, X.; Tsolmon, B.; Chen, J.; Wei, W.; Lei, S.; Yang, J.; Bao, Y. The influence of transplanted trees on soil microbial diversity in coal mine subsidence areas in the Loess Plateau of China. Glob. Ecol. Conserv. 2020, 21, e00877. [Google Scholar] [CrossRef]
- Hussain, R.; Luo, K. Geochemical valuation and intake of F, As, and Se in coal wastes contaminated areas and their potential impacts on local inhabitants, Shaanxi China. Environ. Geochem. Health 2018, 40, 2667–2683. [Google Scholar] [CrossRef]
- Lv, X.; Xiao, W.; Zhao, Y.; Zhang, W.; Li, S.; Sun, H. Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecol. Indic. 2019, 106, 105475. [Google Scholar] [CrossRef]
- Shi, X.; Song, Z. The Silent Majority: Local residents’ environmental behavior and its influencing factors in coal mine area. J. Clean. Prod. 2019, 240, 118275. [Google Scholar] [CrossRef]
- Yang, Z.; Li, W.; Li, X.; Wang, Q.; He, J. Assessment of eco-geo-environment quality using multivariate data: A case study in a coal mining area of Western China. Ecol. Indic. 2019, 107, 105651. [Google Scholar] [CrossRef]
- Wu, X.; Lenon, G.P.; Dong, Y. The calculation of riverine ecological instream flows and runoff profit-loss analysis in a coal mining area of northern China. River Res. Appl. 2020, 36, 760–768. [Google Scholar] [CrossRef]
- Xiao, W.; Fu, Y.H.; Wang, T.; Lv, X.J. Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Li, P. Mine Water Problems and Solutions in China. Mine Water Environ. 2018, 37, 217–221. [Google Scholar] [CrossRef]
- Liu, S.; Li, W.; Wang, Q. Height of the Water-Flowing Fractured Zone of the Jurassic Coal Seam in Northwestern China. Mine Water Environ. 2018, 37, 312–321. [Google Scholar] [CrossRef]
- He, X.; Zhao, Y.; Zhang, C.; Han, P. A Model to Estimate the Height of the Water-conducting Fracture Zone for Longwall Panels in Western China. Mine Water Environ. 2020, 39, 823–838. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, S.; Gao, R.; Guo, S.; Lan, L. Prediction of the Heights of the Water-Conducting Fracture Zone in the Overly-ing Strata of Shortwall Block Mining Beneath Aquifers in Western China. Sustainability 2018, 10, 1–20. [Google Scholar]
- Xiao, W.; Zhang, W.; Ye, Y.; Lv, X.; Yang, W. Is underground coal mining causing land degradation and significantly dam-aging ecosystems in semi-arid areas? Study Ecol. Capit. Perspect. Land Degrad. Dev. 2020, 31, 1969–1989. [Google Scholar]
- Wang, Q.; Li, W.; Li, T.; Li, X.; Liu, S. Goaf water storage and utilization in arid regions of northwest China: A case study of Shennan coal mine district. J. Clean. Prod. 2018, 202, 33–44. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Q.; Li, X.; Zhang, G.; Yang, Y.; He, W.; Wu, X. Structural evolution of overburden and surface damage caused by high-intensity mining with shallow depth. J. China Coal Soc. 2020, 45, 2728–2739. [Google Scholar]
- Fan, L.; Ma, X. A review on investigation of water-preserved coal mining in western China. Int. J. Coal Sci. Technol. 2018, 5, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, W.; Li, X.; He, J. Quantitative analysis of the relationship between vegetation and groundwater buried depth: A case study of a coal mine district in Western China. Ecol. Indic. 2019, 102, 770–782. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, T.; Nie, J.; Cui, F. The shallow strata structure and soil water content in a coal mining subsidence area detected by GPR and borehole data. Environ. Earth Sci. 2020, 79, 500. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, S.; Cui, F.; Nie, J. Using ground penetrating radar combined with borehole to detect soil profile and water content in coal mining subsidence area. Trans. Chin. Soc. Agric. Eng. 2019, 35, 243–251. [Google Scholar]
- Wang, Y.; Bian, Z.; Lei, S.; Zhang, Y. Investigating spatial and temporal variations of soil moisture content in an arid mining area using an improved thermal inertia model. J. Arid Land 2017, 9, 712–726. [Google Scholar] [CrossRef]
- Tai, X.; Hu, Z.; Chen, C. Monitoring soil moisture at different subsidence areas of mining in western windy and sandy re-gion with neutron instrument. Trans. Chin. Soc. Agric. Eng. 2016, 32, 225–231. [Google Scholar]
- Kong, X.; Zhang, Q. Spatial distribution characteristics of arable land grade in Western China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–7. [Google Scholar]
- O’Kelly, B.C. Accurate determination of moisture content of organic soils using the oven drying method. Dry. Technol. 2004, 22, 1767–1776. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, C.; Qiao, X.; Hou, R. A Design of Probe for Measurement of Moisture Content Using Time Domain Reflec-tometry. Sens. Lett. 2010, 8, 118–121. [Google Scholar]
- Xu, J.; Ma, X.; Logsdon, S.D.; Horton, R. Short, Multineedle Frequency Domain Reflectometry Sensor Suitable for Measuring Soil Water Content. Soil Sci. Soc. Am. J. 2012, 76, 1929–1937. [Google Scholar] [CrossRef] [Green Version]
- Kodikara, J.; Rajeev, P.; Chan, D.; Gallage, C. Soil moisture monitoring at the field scale using neutron probe. Can. Geotech. J. 2014, 51, 332–345. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Dong, X.; Leskovar, D.I. Ground penetrating radar for underground sensing in agriculture: A review. Int. Agrophys. 2016, 30, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Capodici, F.; Maltese, A.; Ciraolo, G.; La Loggia, G.; D’Urso, G. Coupling two radar backscattering models to assess soil roughness and surface water content at farm scale. J. Sci. Hydrol. 2013, 58, 1677–1689. [Google Scholar] [CrossRef] [Green Version]
- Danjon, F.; Reubens, B. Assessing and analyzing 3D architecture of woody root systems, a review of methods and applica-tions in tree and soil stability, resource acquisition and allocation. Plant Soil 2008, 303, 1–34. [Google Scholar] [CrossRef]
- Lu, Y.; Song, W.; Lu, J.; Wang, X.; Tan, Y. An Examination of Soil Moisture Estimation Using Ground Penetrating Radar in Desert Steppe. Water 2017, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Benedetto, A.; Benedetto, F. Remote Sensing of Soil Moisture Content by GPR Signal Processing in the Frequency Domain. IEEE Sens. J. 2011, 11, 2432–2441. [Google Scholar] [CrossRef]
- Algeo, J.; Slater, L.; Binley, A.; Van Dam, R.L.; Watts, C. A Comparison of Ground-Penetrating Radar Early-Time Signal Ap-proaches for Mapping Changes in Shallow Soil Water Content. Vadose Zone J. 2018, 17, 180001. [Google Scholar] [CrossRef] [Green Version]
- Binley, A.; Winship, P.; Middleton, R.; Pokar, M.; West, J. High-resolution characterization of vadose zone dynamics using cross-borehole radar. Water Resour. Res. 2001, 37, 2639–2652. [Google Scholar] [CrossRef] [Green Version]
- Gerhards, H.; Wollschlaeger, U.; Yu, Q.; Schiwek, P.; Pan, X.; Roth, K. Continuous and simultaneous measurement of reflec-tor depth and average soil-water content with multichannel ground-penetrating radar. Geophysics 2008, 73, J15–J23. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, X.; Zhou, K.; Klenk, P.; Roth, K.; Sun, L. Ground-penetrating radar for monitoring the distribution of near-surface soil water content in the Gurbantunggut Desert. Environ. Earth Sci. 2013, 70, 2883–2893. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, D.; Wang, Z.; Wang, X. Soil Water Content Estimation Using High-Frequency Ground Penetrating Radar. Wa-ter 2019, 11, 1036. [Google Scholar] [CrossRef] [Green Version]
- Turesson, A. Water content and porosity estimated from ground-penetrating radar and resistivity. J. Appl. Geophys. 2006, 58, 99–111. [Google Scholar] [CrossRef]
- Cui, F.; Bao, J.; Cao, Z.; Li, L.; Zheng, Q. Soil hydraulic parameters estimation using ground penetrating radar data via en-semble smoother with multiple data assimilation. J. Hydrol. 2020, 583, 124552. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial trans-mission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Ledieu, J.; De Ridder, P.; De Clerck, P.; Dautrebande, S. A method of measuring soil moisture by time-domain reflectome-try. J. Hydrol. 1986, 88, 319–328. [Google Scholar] [CrossRef]
- Alharthi, A.; Lange, J. Soil water saturation: Dielectric determination. Water Resour. Res. 1987, 23, 591–595. [Google Scholar] [CrossRef]
- Roth, C.; Malicki, M.; Plagge, R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. Eur. J. Soil Sci. 1992, 43, 1–13. [Google Scholar] [CrossRef]
- Pepin, S.; Plamondon, A.P.; Stein, J. Peat water content measurement using time domain reflectometry. Can. J. For. Res. 1992, 22, 534–540. [Google Scholar] [CrossRef]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Malicki, M.; Plagge, R.; Roth, C. Improving the calibration of dielectric TDR soil moisture determination taking into ac-count the solid soil. Eur. J. Soil Sci. 1996, 47, 357–366. [Google Scholar] [CrossRef]
- Cosenza, P.; Camerlynck, C.; Tabbagh, A. Differential effective medium schemes for investigating the relationship between high-frequency relative dielectric permittivity and water content of soils. Water Resour. Res. 2003, 39, 1230. [Google Scholar] [CrossRef]
- Chelidze, T.; Guéguen, Y. Electrical spectroscopy of porous rocks: A review—I. Theoretical Models Geophys. J. Int. 1999, 137, 1–15. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Bittelli, M.; Pallepati, R.R.; Mahajan, P. Comparison of soil water content estimation equations using ground penetrating radar. J. Hydrol. 2020, 588, 125039. [Google Scholar] [CrossRef]
- Cui, X.; Peng, S.; Lines, L.R.; Zhu, G.; Hu, Z.; Cui, F. Understanding the Capability of an Ecosystem Nature-Restoration in Coal Mined Area. Sci. Rep. 2019, 9, 19690. [Google Scholar] [CrossRef] [PubMed]
Soil Types | Percentage of Clay (%), <0.005 mm | Percentage of Silt (%), 0.005–0.25 mm | Percentage of Sand (%), 0.25–0.5 mm |
---|---|---|---|
Medium sand | 12 | 27 | 61 |
clay | 40 | 42 | 18 |
Sampling Time | Point Sample | Soil | Depth (m) | Thickness (m) | Time (ns) | Dielectric Permittivity | Measured water Content (cm3·cm−3) | Bulk Density (g·cm−3) |
---|---|---|---|---|---|---|---|---|
The first sampling | 1 | Medium sand | 3.6 | 3.6 | 55 | 5.2517 | 0.0675 | 1.7279 |
clay | 6.3 | 2.7 | 130 | 9.5805 | 0.2017 | 7.6899 | ||
2 | Medium sand | 3.9 | 3.9 | 71 | 7.4571 | 0.0716 | 1.6829 | |
clay | 6.2 | 2.3 | 136 | 10.8262 | 0.2086 | 1.8927 | ||
3 | Medium sand | 1.5 | 1.5 | 27 | 7.2900 | 0.0965 | 1.5674 | |
clay | 6.1 | 4.6 | 135 | 11.0202 | 0.2125 | 1.4518 | ||
4 | Medium sand | 1.8 | 1.8 | 33 | 7.5625 | 0.0463 | 1.6157 | |
clay | 3.8 | 1.5 | 78 | 9.4799 | 0.2229 | 1.6612 | ||
5 | Medium sand | 1.5 | 1.5 | 28 | 7.8400 | 0.0749 | 1.3896 | |
clay | 5.1 | 2.2 | 114 | 11.2422 | 0.1436 | 1.3266 | ||
6 | Medium sand | 2.3 | 2.3 | 42 | 7.5028 | 0.0966 | 1.6781 | |
clay | 4.8 | 1.5 | 107 | 11.1807 | 0.2490 | 1.8336 | ||
7 | Medium sand | 1.9 | 1.9 | 35 | 7.6350 | 0.1131 | 1.7753 | |
clay | 5.8 | 3.9 | 128 | 10.9584 | 0.2295 | 1.6984 | ||
8 | Medium sand | 3.4 | 3.4 | 61 | 7.4300 | 0.0568 | 1.6920 | |
clay | 7.8 | 2.2 | 158 | 9.2322 | 0.2223 | 1.6587 | ||
9 | Medium sand | 8.7 | 8.7 | 155 | 6.9151 | 0.0529 | 1.5998 | |
The second sampling | 1 | Medium sand | 3.4 | 2.9 | 57 | 6.3237 | 0.0553 | 1.5279 |
clay | 5.2 | 1.8 | 116 | 11.1967 | 0.1855 | 1.5886 | ||
2 | Medium sand | 2.5 | 2.5 | 38 | 5.1984 | 0.0516 | 1.4775 | |
clay | 4.3 | 1.8 | 89 | 9.6389 | 0.1863 | 1.5716 | ||
3 | Medium sand | 1.5 | 1.5 | 26 | 6.7600 | 0.0576 | 1.4537 | |
clay | 6.5 | 5.0 | 136 | 9.8499 | 0.1952 | 1.4121 | ||
4 | Medium sand | 1.5 | 1.5 | 26 | 6.7600 | 0.0418 | 1.5045 | |
clay | 2.0 | 0.5 | 41 | 9.4556 | 0.1602 | 1.5988 | ||
5 | Medium sand | 2.7 | 2.7 | 44 | 5.9753 | 0.0447 | 1.3831 | |
clay | 5.1 | 2.2 | 105 | 9.5372 | 0.1927 | 1.3229 | ||
6 | Medium sand | 1.5 | 1.5 | 25 | 6.2500 | 0.0564 | 1.3314 | |
clay | 4.7 | 1.2 | 103 | 10.8059 | 0.2067 | 1.5607 | ||
7 | Medium sand | 1.8 | 1.8 | 31 | 6.6736 | 0.0866 | 1.6050 | |
clay | 4.5 | 2.7 | 102 | 11.5600 | 0.2118 | 1.6213 | ||
8 | Medium sand | 5.5 | 5.5 | 122 | 8.1804 | 0.1209 | 1.5085 | |
9 | Medium sand | 5.5 | 5.5 | 89 | 5.8258 | 0.0460 | 1.5266 | |
clay | 9.3 | 1.5 | 206 | 11.0395 | 0.2105 | 1.3938 |
Soil Category | Model Name | RMSE (cm3·cm−3) |
---|---|---|
Medium sand | Topp et al. [43] | 0.0567 |
Ledieu et al. [44] | 0.0560 | |
Malicki et al. 1 [49] (Equation (8) in this study) | 0.0629 | |
Malicki et al. 2 [49] (Equation (7) in this study) | 0.0968 | |
Roth et al. [48] | 0.0600 | |
Roth et al. [46] | 0.0865 | |
Clay | Topp et al. [43] | 0.0284 |
Ledieu et al. [44] | 0.0294 | |
Malicki et al. 1 [49] (Equation (8) in this study) | 0.0388 | |
Malicki et al. 2 [49] (Equation (7) in this study) | 0.0549 | |
Roth et al. [48] | 0.0355 | |
Roth et al. [46] | 0.0334 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, F.; Du, Y.; Ni, J.; Zhao, Z.; Peng, S. Effect of Shallow-Buried High-Intensity Mining on Soil Water Content in Ningtiaota Minefield. Water 2021, 13, 361. https://doi.org/10.3390/w13030361
Cui F, Du Y, Ni J, Zhao Z, Peng S. Effect of Shallow-Buried High-Intensity Mining on Soil Water Content in Ningtiaota Minefield. Water. 2021; 13(3):361. https://doi.org/10.3390/w13030361
Chicago/Turabian StyleCui, Fan, Yunfei Du, Jianyu Ni, Zhirong Zhao, and Shiqi Peng. 2021. "Effect of Shallow-Buried High-Intensity Mining on Soil Water Content in Ningtiaota Minefield" Water 13, no. 3: 361. https://doi.org/10.3390/w13030361
APA StyleCui, F., Du, Y., Ni, J., Zhao, Z., & Peng, S. (2021). Effect of Shallow-Buried High-Intensity Mining on Soil Water Content in Ningtiaota Minefield. Water, 13(3), 361. https://doi.org/10.3390/w13030361