Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Groundwater Flow
2.2. Reactive Transport
3. FDM Scheme
3.1. Time Discretization
3.2. Spatial Discretisation
3.3. Model Verification
3.3.1. Numerical Model Verification with the Physical Sandbox Model
3.3.2. Model Verification with the Analytical Solution
3.4. Remediation Design Optimization Using the GA Approach
- 1.
- The coordinates of oxidants in the X direction are fixed
- 2.
- The vertical distance between oxidant sources
- 3.
- The number of oxidant sources
4. Results
4.1. Numerical Model Verification with the Physical Sandbox Model
4.2. Model Verification with the Analytical Solution
4.3. Optimized Remediation Design
4.3.1. Study 1
4.3.2. Study 2
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ISCO | In situ chemical oxidation |
FDM | Finite difference methods |
FEM | Finite element methods |
FVM | Finite volume methods |
RPCM | Radial point collocation method |
RBFS | Radial base functions |
LP | Linear programming |
QP | Quadratic49programming |
NLP | Nonlinear pro-programming |
GA | Genetic algorithm |
Appendix A. The Expression of Used in the Equation (18)
Appendix B.
References
- Mondal, P.K.; Furbacher, P.D.; Cui, Z.; Krol, M.M.; Sleep, B.E. Transport of polymer stabilized nano-scale zero-valent iron in porous media. J. Contam. Hydrol. 2017. [Google Scholar] [CrossRef]
- Zhao, Z.; Illman, W.A.; Berg, S.J. On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study. J. Hydrol. 2016, 542, 156–171. [Google Scholar] [CrossRef]
- Lee, E.S.; Schwartz, F.W. Characteristics and applications of controlled–release KMnO4 for groundwater remediation. Chemosphere 2007, 66, 2058–2066. [Google Scholar] [CrossRef]
- Chen, D.; Carsel, R.; Moeti, L.; Vona, B. Assessment and prediction of contaminant transport and migration at a Florida superfund site. Environ. Monit. Assess. 1999, 57, 291–299. [Google Scholar] [CrossRef]
- Karatzas, G.P.; Pinder, G.F. Groundwater management using numerical simulation and the outer approximation method for global optimization. Water Resour. Res. 1993, 29, 3371–3378. [Google Scholar] [CrossRef]
- Rogers, L.L.; Dowla, F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour. Res. 1994, 30, 457–481. [Google Scholar] [CrossRef]
- Molénat, J.; Gascuel-Odoux, C. Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use evolution on water quality. Hydrol. Process. 2002, 16, 479–492. [Google Scholar] [CrossRef]
- Craig, J.R.; Rabideau, A.J. Finite difference modeling of contaminant transport using analytic element flow solutions. Adv. Water Resour. 2006, 29, 1075–1087. [Google Scholar] [CrossRef]
- Robeck, M.; Ricken, T.; Widmann, R. A finite element simulation of biological conversion processes in landfills. Waste Manag. 2011, 31, 663–669. [Google Scholar] [CrossRef]
- Ricken, T.; Sindern, A.; Bluhm, J.; Widmann, R.; Denecke, M.; Gehrke, T.; Schmidt, T.C. Concentration driven phase transitions in multiphase porous media with application to methane oxidation in landfill cover layers. ZAMM J. Appl. Math. Mech. Angew. Math. Mech. 2014, 94, 609–622. [Google Scholar] [CrossRef]
- Traverso, L.; Phillips, T.; Yang, Y. Mixed finite element methods for groundwater flow in heterogeneous aquifers. Comput. Fluids 2013, 88, 60–80. [Google Scholar] [CrossRef]
- Seyedpour, S.M.; Ricken, T. Modeling of contaminant migration in groundwater: A continuum mechanical approach using in the theory of porous media. PAMM 2016, 16, 487–488. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, J.; Nan, T.; Xue, Y.; Xie, C.; Ji, H. Efficient triple-grid multiscale finite element method for 3D groundwater flow simulation in heterogeneous porous media. J. Hydrol. 2017, 546, 503–514. [Google Scholar] [CrossRef]
- Seyedpour, S.; Janmaleki, M.; Henning, C.; Sanati-Nezhad, A.; Ricken, T. Contaminant transport in soil: A comparison of the Theory of Porous Media approach with the microfluidic visualisation. Sci. Total Environ. 2019, 686, 1272–1281. [Google Scholar] [CrossRef]
- Liu, X. Parallel Modeling of Three-dimensional Variably Saturated Ground Water Flows with Unstructured Mesh using Open Source Finite Volume Platform Openfoam. Eng. Appl. Comput. Fluid Mech. 2013, 7, 223–238. [Google Scholar] [CrossRef]
- Guneshwor Singh, L.; Eldho, T.I.; Vinod Kumar, A. Coupled groundwater flow and contaminant transport simulation in a confined aquifer using meshfree radial point collocation method (RPCM). Eng. Anal. Bound. Elem. 2016, 66, 20–33. [Google Scholar] [CrossRef]
- Seyedpour, S.; Kirmizakis, P.; Brennan, P.; Doherty, R.; Ricken, T. Optimal remediation design and simulation of groundwater flow coupled to contaminant transport using genetic algorithm and radial point collocation method (RPCM). Sci. Total Environ. 2019, 669, 389–399. [Google Scholar] [CrossRef]
- Praveen Kumar, R.; Dodagoudar, G.R. Two-dimensional modelling of contaminant transport through saturated porous media using the radial point interpolation method (RPIM). Hydrogeol. J. 2008, 16, 1497. [Google Scholar] [CrossRef]
- Yao, G.; Bliss, K.M.; Crimi, M.; Fowler, K.R.; Clark-Stone, J.; Li, W.; Evans, P.J. Radial basis function simulation of slow-release permanganate for groundwater remediation via oxidation. J. Comput. Appl. Math. 2016, 307, 235–247. [Google Scholar] [CrossRef]
- Hansen, S.K.; Berkowitz, B. Aurora: A non-Fickian (and Fickian) particle tracking package for modeling groundwater contaminant transport with MODFLOW. Environ. Model. Softw. 2020, 134, 104871. [Google Scholar] [CrossRef]
- Pham, H.T.; Rühaak, W.; Schuster, V.; Sass, I. Fully hydro-mechanical coupled Plug-in (SUB+) in FEFLOW for analysis of land subsidence due to groundwater extraction. SoftwareX 2019, 9, 15–19. [Google Scholar] [CrossRef]
- Liu, Y.; Ao, C.; Zeng, W.; Srivastava, A.K.; Gaiser, T.; Wu, J.; Huang, J. Simulating water and salt transport in subsurface pipe drainage systems with HYDRUS-2D. J. Hydrol. 2021, 592, 125823. [Google Scholar] [CrossRef]
- Sassine, L.; Khaska, M.; Ressouche, S.; Simler, R.; Lancelot, J.; Verdoux, P.; La Salle, C.L.G. Coupling geochemical tracers and pesticides to determine recharge origins of a shallow alluvial aquifer: Case study of the Vistrenque hydrogeosystem (SE France). Appl. Geochem. 2015, 56, 11–22. [Google Scholar] [CrossRef]
- BüRger, C.M.; Kollet, S.; Schumacher, J.; BöSel, D. Short note: Introduction of a web service for cloud computing with the integrated hydrologic simulation platform ParFlow. Comput. Geosci. 2012, 48, 334–336. [Google Scholar] [CrossRef]
- Armanyous, A.M.; Ghoraba, S.M.; Rashwan, I.M.H.; Dapaon, M.A. A study on control of contaminant transport through the soil using equal double sheet piles. Ain Shams Eng. J. 2016, 7, 21–29. [Google Scholar] [CrossRef]
- Illman, W.A.; Zhu, J.; Craig, A.J.; Yin, D. Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Ojuri, O.O.; Ola, S.A. Estimation of contaminant transport parameters for a tropical sand in a sand tank model. Int. J. Environ. Sci. Technol. 2010, 7, 385–394. [Google Scholar] [CrossRef]
- Meenal, M.; Eldho, T.I. Simulation–optimization model for groundwater contamination remediation using meshfree point collocation method and particle swarm optimization. Sadhana 2012, 37, 351–369. [Google Scholar] [CrossRef]
- Ouyang, Q.; Lu, W.; Hou, Z.; Zhang, Y.; Li, S.; Luo, J. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method. J. Contam. Hydrol. 2017, 200, 15–23. [Google Scholar] [CrossRef]
- Nourani, V.; Mousavi, S.; Dabrowska, D.; Sadikoglu, F. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media. J. Hydrol. 2017, 548, 569–587. [Google Scholar] [CrossRef]
- Nourani, V.; Mousavi, S.; Sadikoglu, F.; Singh, V.P. Experimental and AI-based numerical modeling of contaminant transport in porous media. J. Contam. Hydrol. 2017, 205, 78–95. [Google Scholar] [CrossRef]
- Vadiati, M.; Asghari-Moghaddam, A.; Nakhaei, M.; Adamowski, J.; Akbarzadeh, A.H. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. J. Environ. Manag. 2016, 184, 255–270. [Google Scholar] [CrossRef]
- Sedki, A.; Ouazar, D. Swarm intelligence for groundwater management optimization. J. Hydroinform. 2011, 13, 520–532. [Google Scholar] [CrossRef]
- Pérez, C.J.; Vega-Rodríguez, M.A.; Reder, K.; Flörke, M. A Multi-Objective Artificial Bee Colony-based optimization approach to design water quality monitoring networks in river basins. J. Clean. Prod. 2017, 166, 579–589. [Google Scholar] [CrossRef]
- Katsifarakis, K.L.; Karpouzos, D.K.; Theodossiou, N. Combined use of BEM and genetic algorithms in groundwater flow and mass transport problems. Eng. Anal. Bound. Elem. 1999, 23, 555–565. [Google Scholar] [CrossRef]
- Tian, N.; Sun, J.; Xu, W.; Lai, C.H. An improved quantum-behaved particle swarm optimization with perturbation operator and its application in estimating groundwater contaminant source. Inverse Probl. Sci. Eng. 2011, 19, 181–202. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992; p. 228. [Google Scholar]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill International Book Co.: New York, NY, USA, 1979. [Google Scholar]
- Bear, J. Hydraulics of Groundwater; Dover Publications: New York, NY, USA, 2007. [Google Scholar]
- Freeze, R.; Cherry, J. Groundwater; Prentice-Hall Inc.: Eaglewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Wang, H.; Anderson, M.P. Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods; W.H. Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Nijp, J.J.; Metselaar, K.; Limpens, J.; Gooren, H.P.A.; van der Zee, S.E.A.T.M. A modification of the constant-head permeameter to measure saturated hydraulic conductivity of highly permeable media. MethodsX 2017, 4, 134–142. [Google Scholar] [CrossRef]
- Sarki, A.; Mirjat, M.S.; Mahessar, A.A.; Kori, S.M.; Qureshi, A.L. Determination of Saturated Hydraulic Conductivity of Different Soil Texture Materials. J. Agric. Vet. Sci. 2014, 7, 56–62. [Google Scholar]
- Goltz, M.; Huang, J. Analytical Modeling of Solute Transport in Groundwater. In Analytical Modeling of Solute Transport in Groundwater; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 1–17. [Google Scholar] [CrossRef]
- Li, L.; Zhou, H.; Jaime Gómez-Hernández, J. Steady-state saturated groundwater flow modeling with full tensor conductivities using finite differences. Comput. Geosci. 2010, 36, 1211–1223. [Google Scholar] [CrossRef]
- Wolf, G. Slow Release Permanganate Cylinders for Sustainable in Situ Chemical Oxidation: Development of a Conceptual Design Tool. Master’s Thesis, Clarkson University, Potsdam, NY, USA, 2013. [Google Scholar]
Size | Hydraulic Conductivity | Porosity | |
---|---|---|---|
Sand |
Parameters | Value |
---|---|
Porosity, θ | 25% |
Bulk density of soil, | 1.5 |
Diffusion coefficient in direction, | 0.2 |
Diffusion coefficient in direction, | 0.02 |
velocity, | 1 |
Contaminant concentration at source | 2000 |
Sorption distribution coefficient, | 2 |
First-order decay rate constant, | 0.001 |
First-order desorption rate constant, | 1 |
Time | Sample Point | Measured | MFree Predicted | Percentage |
---|---|---|---|---|
[min] | Number | Concentration [mg/L] | Concentration [mg/L] | Difference % |
1 | 2822 | 2805 | 0.61 | |
5 | 2 | 2508 | 2493 | 0.62 |
3 | 316 | 312 | 1.5 | |
1 | 3072 | 3056 | 0.52 | |
10 | 2 | 3110 | 3092 | 0.59 |
3 | 320 | 317 | 0.93 | |
1 | 3052 | 3041 | 0.38 | |
15 | 2 | 2969 | 2953 | 0.55 |
3 | 928 | 923 | 0.53 | |
1 | 2976 | 2965 | 0.36 | |
20 | 2 | 2899 | 2887 | 0.42 |
3 | 2496 | 2484 | 0.48 | |
1 | 1057 | 1071 | 0.35 | |
25 | 2 | 2982 | 2973 | 0.31 |
3 | 2758 | 2751 | 0.26 | |
1 | 388 | 387 | 0.38 | |
30 | 2 | 1856 | 1852 | 0.26 |
3 | 3398 | 3080 | 9.30 | |
1 | 342 | 342 | 0.11 | |
35 | 2 | 456 | 456 | 0.19 |
3 | 2822 | 2792 | 1.07 | |
1 | 327 | 327 | 0.00 | |
40 | 2 | 385 | 385 | 0.00 |
3 | 2192 | 2170 | 1.07 | |
1 | 313 | 313 | 0.00 | |
45 | 2 | 352 | 352 | 0.00 |
3 | 2004 | 1985 | 0.97 | |
1 | 309 | 309 | 0.00 | |
50 | 2 | 340 | 340 | 0.00 |
3 | 1427 | 1416 | 0.78 | |
1 | 307 | 307 | 0.00 | |
55 | 2 | 329 | 329 | 0.00 |
3 | 940 | 934 | 0.72 | |
1 | 300 | 300 | 0.00 | |
60 | 2 | 314 | 314 | 0.00 |
3 | 404 | 402 | 0.61 |
RSME | |
---|---|
(5,4) (m) Pe = 25 | 0.743 |
(9,5) (m) Pe = 45 | 0.241 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyedpour, S.M.; Valizadeh, I.; Kirmizakis, P.; Doherty, R.; Ricken, T. Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water 2021, 13, 383. https://doi.org/10.3390/w13030383
Seyedpour SM, Valizadeh I, Kirmizakis P, Doherty R, Ricken T. Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water. 2021; 13(3):383. https://doi.org/10.3390/w13030383
Chicago/Turabian StyleSeyedpour, S. M., I. Valizadeh, P. Kirmizakis, R. Doherty, and T. Ricken. 2021. "Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method" Water 13, no. 3: 383. https://doi.org/10.3390/w13030383
APA StyleSeyedpour, S. M., Valizadeh, I., Kirmizakis, P., Doherty, R., & Ricken, T. (2021). Optimization of the Groundwater Remediation Process Using a Coupled Genetic Algorithm-Finite Difference Method. Water, 13(3), 383. https://doi.org/10.3390/w13030383