Arsenic Removal from Highly Contaminated Groundwater by Iron Electrocoagulation—Investigation of Process Parameters and Iron Dosage Calculation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect on Water Geochemistry
3.2. Effect of Current Density on Electrocoagulation Time
3.3. Effect of Process Parameters on Arsenic Removal
4. Conclusions
- Current density (0.35, 0.49, 0.86, 1.72 mA/cm2)
- S/V ratio (38.9, 16.4, 8.16 m2/m3)
- Water Volume (2.15, 30.0, 57.5 L)
- Initial concentration (3250—14,600 µg/L)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutzinger, O. Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. In The Handbook of Environmental Chemistry; Gil, A., Galeano, L.A., Vicente, M.Á., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 67, ISBN 978-3-319-76881-6. [Google Scholar]
- World Health Organization. Arsenic in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Choong, T.S.Y.; Chuah, T.G.; Robiah, Y.; Gregory Koay, F.L.; Azni, I. Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 2007, 217, 139–166. [Google Scholar] [CrossRef]
- Cöl, M.; Cöl, C.; Soran, A.; Sayli, B.S.; Oztürk, S. Arsenic-related Bowen’s disease, palmar keratosis, and skin cancer. Environ. Health Perspect. 1999, 107, 687–689. [Google Scholar] [CrossRef] [PubMed]
- López-Guzmán, M.; Alarcón-Herrera, M.T.; Irigoyen-Campuzano, J.R.; Torres-Castañón, L.A.; Reynoso-Cuevas, L. Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Sci. Total Environ. 2019, 678, 181–187. [Google Scholar] [CrossRef] [PubMed]
- TrinkwV. Verordnung über die Qualität von Wasser für den Menschlichen Gebrauch; Bundesministeriums der Justiz und für Verbraucherschutz: Berlin, Germany, 2019. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- British Geological Survey; Department of Public Halth Engineering. Arsenic Contamination of Groundwater in Bangladesh; Kinniburgh, D.G., Smedley, P.L., Eds.; Government of the People’s Republic of Bangladesh, Department for International Development (UK), British Geological Survey: Keyworth, UK, 2001; Volume 2. [Google Scholar]
- Mondal, P.; Bhowmick, S.; Chatterjee, D.; Figoli, A.; Van der Bruggen, B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere 2013, 92, 157–170. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Singh, T.S.A. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere 2017, 181, 418–432. [Google Scholar] [CrossRef] [PubMed]
- Kobya, M.; Soltani, R.D.C.; Omwene, P.I.; Khataee, A. A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environ. Technol. Innov. 2020, 17, 100519. [Google Scholar] [CrossRef]
- Ratna Kumar, P.; Chaudhari, S.; Khilar, K.C.; Mahajan, S.P. Removal of arsenic from water by electrocoagulation. Chemosphere 2004, 55, 1245–1252. [Google Scholar] [CrossRef]
- Kawahara, M.; Konoha, K.; Nagata, T.; Sadakane, Y. Aluminum and Human Health: Its Intake, Bioavailability and Neurotoxicity. Biomed. Res. Trace Elem. 2007, 18, 211–220. [Google Scholar]
- Rodella, L.F.; Ricci, F.; Borsani, E.; Stacchiotti, A.; Foglio, E.; Favero, G.; Rezzani, R.; Mariani, C.; Bianchi, R. Aluminium exposure induces Alzheimer’s disease-like histopathological alterations in mouse brain. Histol. Histopathol. 2008, 23, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Kobya, M.; Demirbas, E.; Ulu, F. Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation. J. Environ. Chem. Eng. 2016, 4, 1484–1494. [Google Scholar] [CrossRef]
- Mollah, M.Y.A.; Schennach, R.; Parga, J.R.; Cocke, D.L. Electrocoagulation (EC)—Science and applications. J. Hazard. Mater. 2001, 84, 29–41. [Google Scholar] [CrossRef]
- Parga, J.; Cocke, D.; Valenzuela, J.; Gomes, J.; Kesmez, M.; Irwin, G.; Moreno, H.; Weir, M. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México. J. Hazard. Mater. 2005, 124, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Villafañe, J.F.; Montero-Ocampo, C.; García-Lara, A.M. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water. J. Hazard. Mater. 2009, 172, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M. Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique. J. Hazard. Mater. 2009, 164, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Al Aji, B.; Yavuz, Y.; Koparal, A.S. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep. Purif. Technol. 2012, 86, 248–254. [Google Scholar] [CrossRef]
- Ilhan, F.; Ulucan-Altuntas, K.; Avsar, Y.; Kurt, U.; Saral, A. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption. Front. Environ. Sci. Eng. 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Aoudj, S.; Khelifa, A.; Drouiche, N. Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation–electroflotation. Chemosphere 2017, 180, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, A.; Nava, J.L.; Coreño, O.; Rodríguez, I.; Gutiérrez, S. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor. Chemosphere 2016, 144, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Rosales, M.; Coreño, O.; Nava, J.L. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack. Chemosphere 2018, 211, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Emamjomeh, M.M.; Sivakumar, M. Denitrification using a monopolar electrocoagulation/flotation (ECF) process. J. Environ. Manage. 2009, 91, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Mahvi, A.H.; Ebrahimi, S.J.A.; Mesdaghinia, A.; Gharibi, H.; Sowlat, M.H. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation–electroflotation (ECEO–EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. J. Hazard. Mater. 2011, 192, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Amrose, S.E.; Bandaru, S.R.S.; Delaire, C.; van Genuchten, C.M.; Dutta, A.; DebSarkar, A.; Orr, C.; Roy, J.; Das, A.; Gadgil, A.J. Electro-chemical arsenic remediation: Field trials in West Bengal. Sci. Total Environ. 2014, 488–489, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Bandaru, S.R.S.; Roy, A.; Gadgil, A.J.; van Genuchten, C.M. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system. Water Res. 2020, 175, 115668. [Google Scholar] [CrossRef] [PubMed]
- Mohora, E.; Rončević, S.; Agbaba, J.; Zrnić, K.; Tubić, A.; Dalmacija, B. Arsenic removal from groundwater by horizontal-flow continuous electrocoagulation (EC) as a standalone process. J. Environ. Chem. Eng. 2018, 6, 512–519. [Google Scholar] [CrossRef]
- Banerji, T.; Chaudhari, S. Arsenic removal from drinking water by electrocoagulation using iron electrodes- an understanding of the process parameters. J. Environ. Chem. Eng. 2016, 4, 3990–4000. [Google Scholar] [CrossRef]
- Müller, S.; Behrends, T.; van Genuchten, C.M. Sustaining efficient production of aqueous iron during repeated operation of Fe(0)-electrocoagulation. Water Res. 2019, 155, 455–464. [Google Scholar] [CrossRef]
- Gillbricht, C.A. Billbrookdeich 2–10 Standortcharakterisierung und Konzeptionelles Standortmodell; Behörde für Umwelt, Klima, Energie und Landwirtschaft: Hamburg, Germany, 2018. [Google Scholar]
- van Genuchten, C.M.; Bandaru, S.R.S.; Surorova, E.; Amrose, S.E.; Gadgil, A.J.; Peña, J. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment. Chemosphere 2016, 153, 270–279. [Google Scholar] [CrossRef]
- Wisotzky, F.; Cremer, N.; Lenk, S. Angewandte Grundwasserchemie, Hydrogeologie und hydrogeochemische Modellierung; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-662-55557-6. [Google Scholar]
Characterization | Value |
---|---|
pH | 6.8–7.4 |
Elect. Conductivity | 1040–1150 (µS/cm) |
Oxygen | 1.92–3.58 (mg/L) |
Temperature | 11.6–13.3 (°C) |
Ca(2+) | 121–154 (mg/L) |
Mg(2+) | 13.4–14.4 (mg/L) |
Na(+) | 55.6–60.7 (mg/L) |
K(+) | 8.63–9.64 (mg/L) |
As (total) | 3250–14,600 (µg/L) |
SO42− | 172–177 (mg/L) |
Cl− | 77.0–81.7 (mg/L) |
F− | 0.11–0.18 (mg/L) |
HCO3− | 249–297 (mg/L) |
Specifications | Reactor 1 | Reactor 2 | Reactor 3 |
---|---|---|---|
Material | Plexiglas | HDPE | HDPE |
Treated water volume (L) | 2.15 | 30.0 | 57.5 |
Immersed electrode dimensions (cm) | 10 × 10 × 0.3 | 30 × 20 × 0.3 | 30 × 20 × 0.3 |
One electrode effective surface (cm2) | 209 | 1220 | 1220 |
Distance between electrodes (cm) | 1 | 2 | 2 |
Number of electrodes | 4 | 4 | 4 |
Electrode surface over volume 1 (m2/m3) | 38.9 | 16.4 | 8.16 |
Current density (mA/cm2) | 0.35 | 0.49/0.86 | 0.49/1.72 |
Applied current (A) | 0.15 | 1.2/2.1 | 1.2/4.2 |
EC time (min) | 60 | 240 | 180/240 |
Initial arsenic concentration (µg/L) | 3250 | 12,700 | 11,400/14,600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, D.; Stirn, C.N.; Maier, M.V. Arsenic Removal from Highly Contaminated Groundwater by Iron Electrocoagulation—Investigation of Process Parameters and Iron Dosage Calculation. Water 2021, 13, 687. https://doi.org/10.3390/w13050687
Müller D, Stirn CN, Maier MV. Arsenic Removal from Highly Contaminated Groundwater by Iron Electrocoagulation—Investigation of Process Parameters and Iron Dosage Calculation. Water. 2021; 13(5):687. https://doi.org/10.3390/w13050687
Chicago/Turabian StyleMüller, Daniel, Charlotte Nina Stirn, and Martin Veit Maier. 2021. "Arsenic Removal from Highly Contaminated Groundwater by Iron Electrocoagulation—Investigation of Process Parameters and Iron Dosage Calculation" Water 13, no. 5: 687. https://doi.org/10.3390/w13050687
APA StyleMüller, D., Stirn, C. N., & Maier, M. V. (2021). Arsenic Removal from Highly Contaminated Groundwater by Iron Electrocoagulation—Investigation of Process Parameters and Iron Dosage Calculation. Water, 13(5), 687. https://doi.org/10.3390/w13050687