Assessing the Hydroclimatic Movement under Future Scenarios Including both Climate and Land Use Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover Change (LUCC) Simulation
2.2.1. FLUS Model
2.2.2. Data Processing
2.3. Climate Data
2.4. HSPF Model
2.4.1. HSPF Input
2.4.2. Model Calibration
2.5. Assessment of Hydrological Condition of Watershed Based on Budyko Framework
2.5.1. Budyko Framework
2.5.2. Hydroclimatic Change in the Budyko Space
2.5.3. Separation of the Impact of Climate and Land Use Changes on Hydrological Condition
3. Results and Discussion
3.1. FLUS Model Implementation Result
3.1.1. Simulation from 1975–2013
3.1.2. Scenario Simulation
3.2. Projection of Future Climate Change
3.3. Simulated Hydrologic Components for Future Scenarios
3.4. Assessment of the Climate and Land Use Change Impacts on Hydrologic Conditions
3.4.1. Hydroclimatic Movement in Budyko Space
3.4.2. Relative Contribution of Climate and Land Use Changes on Hydrological Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DESA, U.N. World Population Prospects 2019: Highlights; United Nations Department for Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- Ouyang, T.; Zhu, Z.; Kuang, Y. Assessing Impact of Urbanization on River Water Quality In The Pearl River Delta Economic Zone, China. Environ. Monit. Assess. 2006, 120, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Chithra, S.V.; Nair, M.V.H.; Amarnath, A.; Anjana, N.S. Impacts of impervious surfaces on the environment. Int. J. Eng. Sci. Invent. 2015, 4, 27–31. [Google Scholar]
- Lepeška, T. The impact of impervious surfaces on ecohydrology and health in urban ecosystems of Banská Bystrica (Slovakia). Soil Water Res. 2016, 11, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_Chapter3_Low_Res.pdf (accessed on 17 February 2021).
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Gedney, N.; Cox, P.M.; A Betts, R.; Boucher, O.K.; Huntingford, C.; A Stott, P. Detection of a direct carbon dioxide effect in continental river runoff records. Nat. Cell Biol. 2006, 439, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.; Arnold, J.G.; Gassman, P.W.; Giorgi, F.; Gu, R.R. Climate change sensitivity assessment on upper Mississippi River basin streamflows using SWAT. J. Am. Water Resour. Ass. 2007, 42, 997–1015. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nat. Cell Biol. 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 2009, 374, 16–29. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Wei, X.H.; Wu, Y.P.; Liu, S.G.; Huang, Y.H.; Yan, J.H.; Zhang, D.Q.; Zhang, Q.M.; Liu, J.X.; Meng, Z. Quantifying the hydrological responses to climate change using an intact forested small watershed in southern China. Glob. Chang. Biol. 2011, 17, 3736–3746. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Gallant, A.L. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Sci. Total. Environ. 2012, 430, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; Mcknight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a Changing World. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, X.; Bao, H.; Skitmore, M. Review of social water cycle research in a changing environment. Renew. Sustain. Energy Rev. 2016, 63, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Leopold, L. Hydrology for Urban Land Planning: A Guidebook on the Hydrological Effects of Urban Land Use; United State Geological Survey: Washington, DC, USA, 1986.
- Ha, K.-J.; Yun, K.-S. Climate change effects on tropical night days in Seoul, Korea. Theor. Appl. Clim. 2012, 109, 191–203. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water, Air, Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Elliott, A.; Trowsdale, S. A review of models for low impact urban stormwater drainage. Environ. Model. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Baek, S.-S.; Choi, D.-H.; Jung, J.-W.; Lee, H.-J.; Lee, H.; Yoon, K.-S.; Cho, K.H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [Google Scholar] [CrossRef]
- Wilby, R.L. Evaluating climate model outputs for hydrological applications. Hydrol. Sci. J. 2010, 55, 1090–1093. [Google Scholar] [CrossRef]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate models and their evaluation. In Climate Change 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, New York, NY, USA, 2007. [Google Scholar]
- Göncü, S.; Albek, E. Modeling climate change effects on streams and reservoirs with HSPF. Water Resour. Manag. 2010, 24, 707–726. [Google Scholar] [CrossRef]
- Pandey, V.P.; Dhaubanjar, S.; Bharati, L.; Thapa, B.R. Hydrological response of Chamelia watershed in Mahakali Basin to climate change. Sci. Total. Environ. 2019, 650, 365–383. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.-S.; Park, K.; Lee, K.S. The relative impacts of climate change and urbanization on the hydrological response of a Korean urban watershed. Hydrol. Process. 2010, 25, 544–560. [Google Scholar] [CrossRef]
- Mango, L.M.; Melesse, A.M.; McClain, M.E.; Gann, D.; Setegn, S.G. Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management. Hydrol. Earth Syst. Sci. 2011, 15, 2245–2258. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Bhatta, B.; Shrestha, S.; Shrestha, P.K.; Talchabhadel, R. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 2019, 181, 104082. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H.; Yang, D.; Ma, H. Assessing the impacts of climate variability and human activities on annual runoff in the Luan River basin, China. Hydrol. Res. 2013, 44, 940–952. [Google Scholar] [CrossRef] [Green Version]
- Budyko, M.I. Evaporation under Natural Conditions; Gidrometeoizdat: Leningrad, Russia, 1963. [Google Scholar]
- Heidari, H.; Arabi, M.; Warziniack, T.; Kao, S. Assessing Shifts in Regional Hydroclimatic Conditions of U.S. River Basins in Response to Climate Change over the 21st Century. Earth’s Futur. 2020, 8, 1–14. [Google Scholar] [CrossRef]
- Piemontese, L.; Fetzer, I.; Rockström, J.; Jaramillo, F. Future Hydroclimatic Impacts on Africa: Beyond the Paris Agreement. Earths Future 2019, 7, 748–761. [Google Scholar] [CrossRef] [Green Version]
- Van Der Velde, Y.; Vercauteren, N.; Jaramillo, F.; Dekker, S.C.; Destouni, G.; Lyon, S.W. Exploring hydroclimatic change disparity via the Budyko framework. Hydrol. Process. 2013, 28, 4110–4118. [Google Scholar] [CrossRef]
- Jaramillo, F.; Destouni, G. Developing water change spectra and distinguishing change drivers worldwide. Geophys. Res. Lett. 2014, 41, 8377–8386. [Google Scholar] [CrossRef]
- Jaramillo, F.; Cory, N.; Arheimer, B.; Laudon, H.; Van Der Velde, Y.; Hasper, T.B.; Teutschbein, C.; Uddling, J. Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space. Hydrol. Earth Syst. Sci. 2018, 22, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Zaninelli, P.G.; Menéndez, C.G.; Falco, M.; López-Franca, N.; Carril, A.F. Future hydroclimatological changes in South America based on an ensemble of regional climate models. Clim. Dyn. 2018, 52, 819–830. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Chiew, F.H.S.; Vaze, J.; Marvanek, S.; Kirono, D.G.C. Estimation of Climate Change Impact on Mean Annual Runoff across Continental Australia Using Budyko and Fu Equations and Hydrological Models. J. Hydrometeorol. 2012, 13, 1094–1106. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, L.; Wang, D.; Liu, P.; Guo, S.; Xu, C.-Y. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol. 2015, 522, 326–338. [Google Scholar] [CrossRef]
- Kazemi, H.; Sarukkalige, R.; Badrzadeh, H. Evaluation of streamflow changes due to climate variation and human activities using the Budyko approach. Environ. Earth Sci. 2019, 78, 713. [Google Scholar] [CrossRef]
- Vu, T.T.; Li, L.; Jun, K.S. Evaluation of Multi-Satellite Precipitation Products for Streamflow Simulations: A Case Study for the Han River Basin in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Jeon, J.; Bae, S. The Impact of Impervious Surface on Water Quality and Its Threshold in Korea. Water 2016, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A New Global Land-Use and Land-Cover Change Product at a 1-km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 2014, 28, 234–255. [Google Scholar] [CrossRef]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef] [Green Version]
- Arsanjani, J.J.; Kainz, W.; Mousivand, A.J. Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. Int. J. Image Data Fusion 2011, 2, 329–345. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.-Q.; Chen, R. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol. Model. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Donigian, A.S., Jr.; Bicknell, B.R.; Imhoff, J.C. Hydrological Simulation Program—FORTRAN (HSPF). In Computer Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resources Pubs: Highlands Ranch, CO, USA, 1995; pp. 395–442. [Google Scholar]
- Stern, M.; Flint, L.; Minear, J.; Flint, A.; Wright, S. Characterizing Changes in Streamflow and Sediment Supply in the Sacramento River Basin, California, Using Hydrological Simulation Program—FORTRAN (HSPF). Water 2016, 8, 432. [Google Scholar] [CrossRef] [Green Version]
- Albek, M.; Bakır Öğütveren, Ü.; Albek, E. Hydrological Modeling of Seydi Suyu Watershed (Turkey) with HSPF. J. Hydrol. 2004, 285, 260–271. [Google Scholar] [CrossRef]
- Diaz-Ramirez, J.N.; Perez-Alegria, L.R.; McAnally, W.H. Hydrology and Sediment Modeling Using BASINS/HSPF in a Tropical Island Watershed. Trans. ASABE 2008, 51, 1555–1565. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Berghuijs, W.; Greve, P. A review of the Budyko water balance framework. In Proceedings of the EGU General Assembly, Vienna, Austria, 12–17 April 2015; pp. 12–17. [Google Scholar]
- Budyko, M.I. Climate and Life; Academic Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Patterson, L.A.; Lutz, B.D.; Doyle, M.W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour. Res. 2013, 49, 7278–7291. [Google Scholar] [CrossRef]
- Ma, Z.; Kang, S.; Zhang, L.; Tong, L.; Su, X. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J. Hydrol. 2008, 352, 239–249. [Google Scholar] [CrossRef]
- Turc, L. Calcul du Bilan de l’Eau: Evaluation en Function des Precipitation et des Temperatures. IAHS Publ. 1954, 37, 88–200. [Google Scholar]
- Pike, J. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 1964, 2, 116–123. [Google Scholar] [CrossRef]
- Fu, B. On the calculation of the evaporation from land surface. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 40. [Google Scholar] [CrossRef]
- Porporato, A.; Daly, E.; Rodriguez-Iturbe, I. Soil Water Balance and Ecosystem Response to Climate Change. Am. Nat. 2004, 164, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tang, Y. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophys. Res. Lett. 2014, 41, 4569–4577. [Google Scholar] [CrossRef] [Green Version]
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S.I. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014, 7, 716–721. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Greve, P.; Seneviratne, S.I. The sensitivity of water availability to changes in the aridity index and other factors-A probabilistic analysis in the Budyko space. Geophys. Res. Lett. 2016, 43, 6985–6994. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; De Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, X.; Li, X. Calibrating a Land Parcel Cellular Automaton (LP-CA) for urban growth simulation based on ensemble learning. Int. J. Geogr. Inf. Sci. 2017, 31, 2480–2504. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Future Impacts of Land Use Change on Ecosystem Services under Different Scenarios in the Ecological Conservation Area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Kriegler, E.; Edmonds, J.; Hallegatte, S.; Ebi, K.L.; Kram, T.; Riahi, K.; Winkler, H.; Van Vuuren, D.P. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Clim. Chang. 2014, 122, 401–414. [Google Scholar] [CrossRef] [Green Version]
Data | Data Description | Data Sources |
---|---|---|
Land Use 1975 | Land Use in 1975 at 30 m Spatial Resolution | Water Resources Management Information System (WAMIS). Available online: http://www.wamis.go.kr/ (accessed on 11 March 2021) |
Land Use 2013 | Land use in 2013 at 30 m Spatial resolution | Environmental Geographic Information Service. Available online: https://egis.me.go.kr/ (accessed on 11 March 2021) |
DEM | Digital Elevation Model with 30 m Spatial Resolution | National Geographic Information Institute (NGII). Available online: http://map.ngii.go.kr/ (accessed on 11 March 2021) |
Aspect | Direction of the Maximum Rate of Change in the z–Value from Each Cell | Calculated from DEM data |
Slope | Rate of Maximum Change in z-Value from Each Cell | Calculated from DEM data |
Distance from Rivers | Distance from Rivers Calculated by Euclidean Distance Tool in ArcGIS | Water resources Management Information System (WAMIS). Available online: http://www.wamis.go.kr/ (accessed on 11 March 2021) |
Year | Built-up Land | Agricultural Land | Forest Land | Grassland | Wetland | Barren Land | Water |
---|---|---|---|---|---|---|---|
1975 | 314799 | 4249147 | 14877935 | 303125 | 60170 | 180553 | 259414 |
2013 | 1408033 | 3173318 | 13872451 | 762706 | 141250 | 386489 | 500897 |
2051 | 2085907 | 2917205 | 13121831 | 801746 | 149797 | 423515 | 745142 |
2089 | 2511200 | 2834317 | 12530224 | 810935 | 157494 | 444566 | 956406 |
Parameter | Definition | Units | Original Value | Calibrated Value |
---|---|---|---|---|
FOREST | Pervious Land Fraction Covered by Forest | none | 0–1 | 0–1 |
INFILT | Index to Infiltration Capacity | In/h | 0.16 | 0.01–0.03 |
LSUR | Length of Overland Flow | feet | 150–250 | 150–350 |
SLSUR | Slope of Overland Flow Plane | none | - | 0.001–0.885 |
INTFW | Interflow Inflow Parameter | none | 0.75 | 3 |
Calibration | Validation | |||||
---|---|---|---|---|---|---|
R2 | NSE | PBIAS | R2 | NSE | PBIAS | |
Minimum | 0.79 | 0.37 | 0.01 | 0.70 | 0.12 | 0.01 |
Maximum | 0.99 | 0.99 | 37.94 | 0.99 | 0.99 | 58.10 |
Average | 0.91 | 0.73 | 14.10 | 0.88 | 0.69 | 18.43 |
Land Use Types | Actual Land Use in 2013 | |||||||
---|---|---|---|---|---|---|---|---|
Built-up Land | Cultivated Land | Forest Land | Grassland | Wetland | Barren Land | Water | Total | |
Built-up Land | 5915 | 3107 | 2853 | 839 | 209 | 563 | 498 | 13984 |
Agricultural Land | 4036 | 16238 | 7925 | 1571 | 550 | 1103 | 848 | 32266 |
Forest Land | 2090 | 7626 | 123620 | 4063 | 209 | 1367 | 404 | 139309 |
Grassland | 1036 | 1915 | 3500 | 739 | 60 | 251 | 94 | 7591 |
Wetland | 213 | 256 | 235 | 102 | 74 | 54 | 442 | 1376 |
Barren Land | 503 | 1729 | 746 | 271 | 99 | 307 | 176 | 3830 |
Water | 174 | 880 | 84 | 74 | 175 | 140 | 2563 | 4090 |
Total | 13967 | 31751 | 138963 | 7659 | 1376 | 3785 | 5025 | 202526 |
Land Use Types | 1975 (km2/%) | 2013 (km2/%) | 2051 (km2/%) | 2089 (km2/%) | Change (km2/%) | ||
---|---|---|---|---|---|---|---|
1975–2013 | 2013–2051 | 2013–2089 | |||||
Built-up Land | 283.32 | 1267.19 | 1877.32 | 2260.08 | 983.87 | 609.99 | 992.75 |
(1.55) | (6.95) | (10.30) | (12.40) | (5.40) | (3.35) | (5.45) | |
Cultivated Land | 3824.16 | 2855.89 | 2625.48 | 2550.89 | −968.27 | −231.09 | −305.69 |
(20.99) | (15.67) | (14.40) | (13.99) | (−5.31) | (−1.27) | (−1.68) | |
Forest Land | 13389.63 | 12484.79 | 11816.37 | 11714.46 | −904.84 | −674.44 | −776.35 |
(73.49) | (68.52) | (64.83) | (64.27) | (−4.97) | (−3.70) | (−4.26) | |
Grassland | 272.8 | 686.41 | 721.57 | 729.84 | 413.62 | 34.79 | 43.06 |
(1.50) | (3.77) | (3.96) | (4.00) | (2.27) | (0.19) | (0.24) | |
Wetland | 54.15 | 127.12 | 134.82 | 141.74 | 72.97 | 7.70 | 14.62 |
(0.30) | (0.70) | (0.74) | (0.78) | (0.40) | (0.04) | (0.08) | |
Barren Land | 162.5 | 347.83 | 381.16 | 400.11 | 185.33 | 33.22 | 52.17 |
(0.89) | (1.91) | (2.09) | (2.2) | (1.02) | (0.18) | (0.29) | |
Water | 233.47 | 450.79 | 670.63 | 430.23 | 217.32 | 219.83 | −20.57 |
(1.28) | (2.47) | (3.68) | (2.36) | (1.19) | (1.21) | (−0.11) |
Annual Precipitation (mm) | ||||
---|---|---|---|---|
Past Period | Mean | 1116.2 | 11.3 | |
Range | 982.14–1242.1 | 10.4–12.0 | ||
Current Period | Mean Range | 1386.1 (+24.19%) | 11.6 (+2.05%) | |
1238.4–1709.3 | 10.9–12.4 | |||
SSP2 | NF | Mean | 1468.7 (+31.59%) | 15.0 (+32.48%) |
Range | 1127.7–1672.4 | 13.9–16.0 | ||
FF | Mean | 1714.0 (+53.57%) | 16.9 (+49.39%) | |
Range | 1301.3–2001.8 | 16.1–18.1 | ||
SSP5 | NF | Mean | 1448.8 (+29.81%) | 16.5 (+45.54%) |
Range | 1125.1–1863.5 | 15.1–18.0 | ||
FF | Mean | 1822.3 (+63.27%) | 20.4 (+79.84%) | |
Range | 1342.4–2300.0 | 18.4–22.2 |
Group | Direction | Δ(E/P)_l | Δ(E/P)_c | ΔQ_l | ΔQ_c | Δ(PET/P) |
---|---|---|---|---|---|---|
1 | 45°—90° | + | + | + | - | + |
2 | 90°—135° | + | + | + | + | + |
3 | 135°—180° | + | + | + | + | + |
4 | 180°—225° | + | - | + | + | - |
5 | 225°—270° | + | - | + | + | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, H.; Kim, K.; Jun, S.-M.; Hwang, S.; Kang, M.-S. Assessing the Hydroclimatic Movement under Future Scenarios Including both Climate and Land Use Changes. Water 2021, 13, 1120. https://doi.org/10.3390/w13081120
Kim S, Kim H, Kim K, Jun S-M, Hwang S, Kang M-S. Assessing the Hydroclimatic Movement under Future Scenarios Including both Climate and Land Use Changes. Water. 2021; 13(8):1120. https://doi.org/10.3390/w13081120
Chicago/Turabian StyleKim, Sinae, Hakkwan Kim, Kyeung Kim, Sang-Min Jun, Soonho Hwang, and Moon-Seong Kang. 2021. "Assessing the Hydroclimatic Movement under Future Scenarios Including both Climate and Land Use Changes" Water 13, no. 8: 1120. https://doi.org/10.3390/w13081120
APA StyleKim, S., Kim, H., Kim, K., Jun, S. -M., Hwang, S., & Kang, M. -S. (2021). Assessing the Hydroclimatic Movement under Future Scenarios Including both Climate and Land Use Changes. Water, 13(8), 1120. https://doi.org/10.3390/w13081120