Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mechanical and Mechanochemical Treatment
2.3. Technical, Structural and Morphological Analysis
2.4. X-ray Fluorescence Analysis
2.5. Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)
2.6. Surface Properties
2.7. Adsorption Experiments and Calculations
- C0 is initial concentration of copper ions in solution (mmol/L);
- Ce is the equilibration concentration of copper in solution (mmol/L);
- qe is the amount of copper sorbed by peat at equilibrium time (mg/g).
- Ce and qe have the same definition as mentioned above;
- Q is the adsorption maximum (mmol/g);
- KL is a constant related to the intensity of adsorption (L/kg of peat).
- qe and Ce have the same definition mentioned before;
- Kf and 1/n are positive valued adjustable parameters.
2.8. Thermodynamic Calculations
3. Results and Discussion
3.1. Characterization of Sorbents
3.2. Adsorption Experiments
3.2.1. Adsorption Studies of Cu(II) on Natural and Modified Peat
3.2.2. Adsorption Isotherm
3.3. FTIR Spectroscopy Data before and after Experiments
3.4. Thermodynamic Modeling
Natural Peat | log K | Species | Gibbs Free Energy, kCal/mol |
---|---|---|---|
Carboxyl sites 2 mmol/g | Cu2+ | +15.675 | |
Cu2+ 10 ÷ 150 mg/L | Alk-COOH | 0 | |
Alk-COOH = Alk-COO− + H+ | −3.5 | Alk-COO− | 4.77 |
Alk-COO− + Cu2+ = Alk-COOCu+ | 3.0 | Alk-COOCu+ | 16.6 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomczyk, A.; Boguta, P.; Sokołowska, Z. Biochar efficiency in copper removal from Haplic soils. Int. J. Environ. Sci. Technol. 2019, 16, 4899–4912. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.Z.; Lupion, R.M.; Raimondi, I.M.; Pejon, O.J.; Rodrigues, V.G.S. Sorption efficiency of potentially toxic elements onto low-cost materials: Peat and compost. Sustainability 2021, 13, 12847. [Google Scholar] [CrossRef]
- Raimondi, I.M.; Rodrigues, V.G.; Lima, J.Z.; Marques, J.P.; Vaz, L.A.A.; Vieira, E.M. Assessment of the use of tropical peats as local alternative materials for the adsorption of Pb, Zn and Cd: An equilibrium study. Earth Sci. Res. J. 2021, 25, 29–40. [Google Scholar] [CrossRef]
- Couillard, D. The use of peat in wastewater treatment. Water Res. 1994, 28, 1261–1274. [Google Scholar] [CrossRef]
- Brown, A.P.; Gill, S.A.; Allen, S.J. Metal removal from wastewater using peat. Water Res. 2000, 34, 3907–3916. [Google Scholar] [CrossRef]
- Gogoi, H.; Leiviska, T.; Heiderscheidt, E.; Postila, H.; Tanskanen, J. Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents. J. Environ. Manag. 2018, 209, 316–327. [Google Scholar] [CrossRef]
- Pelinsom Marques, J.; Silvestre Rodrigues, V.G.; Monici Raimondi, I.; Zanin Lima, J. Increase in Pb and Cd adsorption by the application of peat in a tropical soil. Water Air Soil Pollut. 2020, 231, 136. [Google Scholar] [CrossRef]
- Gündoğan, R.; Acemioğlu, B.; Alma, M.H. Copper (II) adsorption from aqueous solution by herbaceous peat. J. Colloid Interface Sci. 2004, 269, 303–309. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef]
- Lee, S.-J.; Park, J.H.; Ahn, Y.-T.; Chung, J.W. Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions. Water Air Soil Pollut. 2015, 226, 9. [Google Scholar] [CrossRef]
- Bartczak, P.; Norman, M.; Klapiszewski, L.; Karwanska, N.; Kawalec, M.; Baczynska, M.; Wysokowski, M.; Zdarta, J.; Ciesielczyk, F.; Jesionowski, T. Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arab. J. Chem. 2018, 11, 1209–1222. [Google Scholar] [CrossRef] [Green Version]
- Leiviskä, T.; Khalid, M.K.; Gogoi, H.; Tanskanen, J. Enhancing peat metal sorption and settling characteristics. Ecotoxicol. Environ. Saf. 2018, 148, 346–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, Y.S.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 1999, 34, 735–741. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Nwachukwu, O.I.; Pulford, I.D. Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc-contaminated soil. Soil Use Manag. 2008, 24, 199–207. [Google Scholar] [CrossRef]
- Ong, H.L.; Swanson, V.E. Adsorption of copper by peat, lignite, and bituminous coal. Econ. Geol. 1966, 61, 1214–1231. [Google Scholar] [CrossRef]
- Kasiuliene, A.; Carabante, I.; Bhattacharya, P.; Caporale, A.G.; Adamo, P.; Kumpiene, J. Removal of metal(oid)s from contaminated water using iron-coated peat sorbent. Chemosphere 2018, 198, 290–296. [Google Scholar] [CrossRef]
- Gupta, B.S.; Curran, M.; Hasan, H.; Ghosh, T.K. Adsorption characteristics of Cu and Ni on Irish peat moss. J. Environ. Manag. 2009, 90, 954–960. [Google Scholar] [CrossRef]
- McKay, G.; Porter, J.F. Equilibrium parameters for the sorption of copper, cadmium and zinc ions onto peat. J. Chem. Technol. Biotechnol. 1997, 69, 309–320. [Google Scholar] [CrossRef]
- Allen, S.J.; Whitten, L.J.; Murray, M.; Duggan, O.; Brown, P. The adsorption of pollutants by peat, lignite and activated chars. J. Chem. Technol. Biotechnol. 1997, 68, 442–452. [Google Scholar] [CrossRef]
- Ringqvist, L.; Öborn, I. Copper and zinc adsorption onto poorly humified sphagnum and carex peat. Water Res. 2002, 36, 2233–2242. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef] [PubMed]
- Bulgariu, L.; Bulgariu, D.; Macoveanu, M. Adsorptive performance of alkaline treated peat for heavy metal removal. Sep. Sci. Technol. 2011, 46, 1023–1033. [Google Scholar] [CrossRef]
- Gautam, R.K.; Mudhoo, A.; Lofrano, G.; Chattopadhaya, M.C. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. [Google Scholar] [CrossRef]
- Nikishina, M.; Perelomov, L.; Atroshchenko, Y.; Ivanova, E.; Mukhtorov, L.; Tolstoy, P. Sorption of Fulvic Acids and Their Compounds with Heavy Metal Ions on Clay Minerals. Soil Syst. 2022, 6, 2. [Google Scholar] [CrossRef]
- Di Bonito, M.; Lofts, S.; Groenenberg, J.E. Chapter 11—Models of geochemical speciation: Structure and applications. In Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, 2nd ed.; De Vivo, B., Belkin, H.E., Lima, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 11, pp. 237–305. [Google Scholar] [CrossRef]
- Mehlhorn, J.; Besold, J.; Lezama Pacheco, J.S.; Gustafsson, J.P.; Kretzschmar, R.; Planer-Friedrich, B. Copper mobilization and immobilization along an organic matter and redox gradient—insights from a mofette site. Environ. Sci. Technol. 2018, 52, 13698–13707. [Google Scholar] [CrossRef]
- Zaccone, C.; Cocozza, C.; Cheburkin, A.K.; Shotyk, W.; Miano, T.M. Enrichment and depletion of major and trace elements, and radionuclides in ombrotrophic raw peat and corresponding humic acids. Geoderma 2007, 141, 235–246. [Google Scholar] [CrossRef]
- Singh, N.B.; Nagpal, G.; Agrawal, S. Water purification by using adsorbents: A review. Environ. Technol. Innov. 2018, 11, 187–240. [Google Scholar] [CrossRef]
- Ansone-Bertina, L.; Klavins, M. Sorption of V and VI group metalloids (As, Sb, Te) on modified peat sorbents. Open Chem. 2016, 14, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, A.G.; Pokrovsky, O.S.; Beike, A.K.; Reski, R.; Di Palma, A.; Adamo, P.; Giordano, S.; Angel Fernandez, J. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses. J. Colloid Interface Sci. 2016, 461, 326–334. [Google Scholar] [CrossRef]
- Batista, A.P.S.; Romão, L.P.C.; Arguelho, M.L.P.M.; Garcia, C.A.B.; Alves, J.P.H.; Passos, E.A.; Rosa, A.H. Biosorption of Cr(III) using in natura and chemically treated tropical peats. J. Hazards Mater. 2009, 163, 517–523. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Tang, L.; Salvador, J.M. Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. J. Hazards Mater. 1996, 48, 191–206. [Google Scholar] [CrossRef]
- Yudina, N.V.; Savel’eva, A.V.; Linkevich, E.V. Changes in the Composition of Humic Acids with Mechanochemical Impact on Peat and Coal. Solid Fuel Chem. 2019, 53, 29–35. [Google Scholar] [CrossRef]
- Savel’eva, A.V.; Yudina, N.V. Mechanochemical modification of peat humic acids. Solid Fuel Chem. 2014, 48, 328–331. [Google Scholar] [CrossRef]
- Gondar, D.; López, R.; Fiol, S.; Antelo, J.M.; Arce, F. Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog. Geoderma 2006, 135, 196–203. [Google Scholar] [CrossRef]
- Mal’tseva, E.V.; Filatov, D.A.; Yudina, N.V.; Chaikovskaya, O.N. Role of modified humic acids from peat in the detoxification of tebuconazole. Solid Fuel Chem. 2011, 45, 62–67. [Google Scholar] [CrossRef]
- Skripkina, T.S.; Bychkov, A.L.; Tikhova, V.D.; Lomovsky, O.I. Mechanochemical solid-phase reactions of humic acids from brown coal with sodium percarbonate. Solid Fuel Chem. 2018, 52, 356–360. [Google Scholar] [CrossRef]
- Skripkina, T.S.; Bychkov, A.L.; Tikhova, V.D.; Smolyakov, B.S.; Lomovsky, O.I. Mechanochemically oxidized brown coal and the effect of its application in polluted water. Environ. Technol. Innov. 2018, 11, 74–82. [Google Scholar] [CrossRef]
- Urazova, T.S.; Bychkov, A.L.; Lomovskii, O.I. Mechanochemical modification of the structure of brown coal humic acids for preparing a sorbent for heavy metals. Russ. J. Appl. Chem. 2014, 87, 651–655. [Google Scholar] [CrossRef]
- Burkova, V.N.; Yudina, N.V.; Maltseva, E.V.; Savelyeva, A.V. Effect of the solid-phase mechanoactivation on functional composition of humic acids from coals. Int. J. Appl. Fund. Res. 2015, 9, 84–87. (In Russian). Available online: https://applied-research.ru/ru/article/view?id=7444 (accessed on 1 July 2022).
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Gregg, S.; Sing, K. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, UK, 1982; 303p. [Google Scholar]
- Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems: Review. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Omar, H.A.; Aziz, M.; Shakir, K. Adsorption of U(VI) from dilute aqueous solutions onto peat moss. Radiochim. Acta 2007, 95, 17–24. [Google Scholar] [CrossRef]
- Russel, W.W. The Adsorption of Gases and Vapors. Volume 1: Physical Adsorption (Brunauer, Stephen). Chem. Educ. 1944, 21, 52. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Ober dies adsorption in Losungen. J. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Shvarov, Y.V. HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by Windows. Geochem. Int. 2008, 46, 834–839. [Google Scholar] [CrossRef]
- Zaccone, C.; Plaza, C.; Ciavatta, C.; Miano, T.M.; Shotyk, W. Advances in the determination of humification degree in peat since Achard (1786): Applications in geochemical and paleoenvironmental studies. Earth-Sci. Rev. 2018, 185, 163–178. [Google Scholar] [CrossRef]
- Borthakur, P.; Aryafard, M.; Zara, Z.; David, R.; Minofar, B.; Das, M.R.; Vithanage, M. Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment. J. Environ. Manag. 2021, 283, 111989. [Google Scholar] [CrossRef]
- Zaccone, C.; Cocozza, C.; D’Orazio, V.; Plaza, C.; Cheburkin, A.; Miano, T.M. Influence of extractant on quality and trace elements content of peat humic acids. Talanta 2007, 73, 820–830. [Google Scholar] [CrossRef]
- Zaccone, C.; Miano, T.M.; Shotyk, W. Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Org. Geochem. 2007, 38, 151–160. [Google Scholar] [CrossRef]
- Cocozza, C.; D’Orazio, V.; Miano, T.M.; Shotyk, W. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy, ESR and FT-IR, and comparison with physical properties. Org. Geochem. 2003, 34, 49–60. [Google Scholar] [CrossRef]
- Li, C.-I.; Fan, J.I.; Wang, S.; Zhang, J.-J.; Gao, Q.; Wu, J.-G.; Zhao, L.-P.; Wang, L.-C.; Zheng, L.-R. Adsorption of Cu(II) on humic acids derived from different organic materials. J. Integr. Agric. 2015, 14, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-F.; Lee, A.Y.W. Kinetic study on removal of heavy metal ions from aqueous solution by using soil. Environ. Sci. Pollut. Res. 2015, 22, 10144–10158. [Google Scholar] [CrossRef]
- Schiewer, S.; Volesky, B. Modeling multi-metal ion exchange in biosorption. Environ. Sci. Technol. 1996, 30, 2921–2927. [Google Scholar] [CrossRef]
- Tipping, E. Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3–48. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Strömvall, A.M.; Steenari, B.M. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations. J. Hazards Mater. 2008, 152, 885–891. [Google Scholar] [CrossRef]
- Villaverde, P.; Gondar, D.; Antelo, J.; Lopez, R.; Fiol, S.; Arce, F. Influence of pH on copper, lead and cadmium binding by an ombrotrophic peat. Eur. J. Soil Sci. 2009, 60, 377–385. [Google Scholar] [CrossRef]
- Zehra, T.; Lim, L.B.L.; Priyantha, N. Characterization of peat samples collected from Brunei Darussalam and their evaluation as potential adsorbents for Cu(II) removal from aqueous solution. Desalination Water Treat. 2015, 57, 20889–20903. [Google Scholar] [CrossRef]
- Ma, W.; Tobin, J.M. Determination and modelling of effects of pH on peat biosorption of chromium, copper and cadmium. Biochem. Eng. J. 2004, 18, 33–40. [Google Scholar] [CrossRef]
- Gosset, T.; Trancart, J.L.; Thévenot, D.R. Batch metal removal by peat. Kinetics and thermodynamics. Water Res. 1986, 20, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Burdukov, A.P.; Popov, V.I.; Chernetskiy, M.Y.; Dekterev, A.A.; Hanjalić, K. Mechanical activation of micronized coal: Pro-559 spects for new combustion applications. Appl. Therm. Eng. 2015, 74, 174–181. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Maltseva, E.V.; Yudina, N.V. Composition of fulvic acids after the mechanical activation of peats. Solid Fuel Chem. 2016, 50, 7–11. [Google Scholar] [CrossRef]
- Vakili, M.; Qiu, W.; Cagnetta, G.; Huang, J.; Yu, G. Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan. Front. Environ. Sci. Eng. 2021, 15, 128. [Google Scholar] [CrossRef]
- Ho, Y.S.; Porter, J.F.; McKay, G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water. Air. Soil Pollut. 2022, 141, 1–33. [Google Scholar] [CrossRef]
- Essington, M.E. Soil and Water Chemistry: An Investigative Approach, 2nd ed.; CRC Press: London, UK, 2021; 656p. [Google Scholar]
- Abat, M.; McLaughlin, M.J.; Kirby, J.K.; Stacey, S.P. Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak, Malaysia. Geoderma 2012, 175–176, 58–63. [Google Scholar] [CrossRef]
- Charazi’nska, S.; Lochy´nski, P.; Burszta-Adamiak, E. Removal of heavy metal ions form acidic electrolyte for stainless steel electropolishing via adsorption using Polish peats. J. Water Process Eng. 2021, 42, 102169. [Google Scholar] [CrossRef]
- Koivula, M.P.; Kujala, K.; Rönkkömäki, H.; Mäkelä, M. Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers. J. Hazards Mater. 2009, 164, 345–352. [Google Scholar] [CrossRef]
- Liu, Z.-r.; Zhou, L.-m.; Wei, P.; Zeng, K.; Wen, C.-x.; Lan, H.-h. Competitive adsorption of heavy metal ions on peat. J. China Univ. Min. Technol. 2008, 18, 255–260. [Google Scholar] [CrossRef]
- Qin, F.; Wen, B.; Shan, X.-Q.; Xie, Y.-N.; Liu, T.; Zhang, S.-Z.; Khan, S.U. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environ. Pollut. 2006, 144, 669–680. [Google Scholar] [CrossRef]
- Shi, W.; Lu, C.; He, J.; En, H.; Gao, M.; Zhao, B.; Zhou, B.; Zhou, H.; Liu, H.; Zhang, Y. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals. Ecotoxicol. Environ. Saf. 2018, 154, 59–68. [Google Scholar] [CrossRef]
- Novikova, S.P.; Gaskova, O.L. Influence of natural fulvic acids on the solubility of sulfide ores (experimental study). Russ. Geol. Geophys. 2013, 54, 509–517. [Google Scholar] [CrossRef]
- Kolpakova, M.N.; Gaskova, O.L.; Naymushina, O.S.; Krivonogov, S.K. Ebeity Lake, Russia: Chemival-organic and mineral composition of water and bottom sediments. Bull. Tomsk Polytech. Univ. 2018, 329, 111–123. [Google Scholar]
- Kolpakova, M.; Gaskova, O.; Borzenko, S.; Krivonogov, S.; Naymushina, O.; Rudaya, N. Distribution profile of chemical elements during the last 13 thousand years from the sediments of maloye Yarovoe lake (Western Siberia, Russia). Water 2020, 12, 3001. [Google Scholar] [CrossRef]
- Takahashi, Y.; Minai, Y.; Ambeb, S.; Makide, Y.; Ambeb, F.; Tominaga, T. Simultaneous determination of stability constants of humate complexes with various metal ions using multitracer technique. Sci. Total Environ. 1997, 98, 61–71. [Google Scholar] [CrossRef]
Organic Matter Content | Ash | pH | EC | SiO2 | CaO | Al2O3 | SO3 | MgO | Fe2O3 | Na2O | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|
% | % | µS/cm | % | ppb | |||||||
97.8 | 2.2 | 4.0 | 127.1 | 0.76 | 0.45 | 0.29 | 0.27 | 0.25 | 0.24 | 0.02 | 13.6 |
%C | %H | %N | %S | H/C | C/N |
---|---|---|---|---|---|
43.76 | 5.53 | 0.57 | - | 1.50 | 91.1 |
Sample | CBET * | am, mol/g | Sspec, m2/g (BET Method) | Sspec, m2/g (Greg and Sing Approximation [43]) |
---|---|---|---|---|
NP | 6.3 | 0.96 | 4.2 ± 0.3 | 6.9 ± 0.5 |
MAP | 18.2 | 0.86 | 3.7 ± 0.3 | 5.9 ± 0.4 |
MCAP | 27.8 | 1.10 | 4.8 ± 0.3 | 7.0 ± 0.5 |
Sample | Ph-OH | Ar-COOH | Alk-COOH |
---|---|---|---|
NP | 7.7 ± 0.6 | 5.3 ± 0.5 | 2.0 ± 0.3 |
MAP | 7.0 ± 0.7 | 3.5 ± 0.6 | 1.7 ± 0.4 |
MCAP | 5.5 ± 0.4 | 2.4 ± 0.5 | 0.5 ± 0.2 |
Isotherm | Sample | Parameters | ||
---|---|---|---|---|
Langmuir | Q (mg/g) | KL | r2 | |
NP | 24.1 | 0.30 | 0.878 | |
MAP | 42.1 | 0.23 | 0.970 | |
MCAP | 16.0 | 0.07 | 0.889 | |
Freundlich | n | Kf | r2 | |
NP | 2.31 | 30.0 | 0.977 | |
MAP | 2.16 | 28.2 | 0.930 | |
MCAP | 1.76 | 22.2 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shvartseva, O.; Skripkina, T.; Gaskova, O.; Podgorbunskikh, E. Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions. Water 2022, 14, 2114. https://doi.org/10.3390/w14132114
Shvartseva O, Skripkina T, Gaskova O, Podgorbunskikh E. Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions. Water. 2022; 14(13):2114. https://doi.org/10.3390/w14132114
Chicago/Turabian StyleShvartseva, Olga, Tatiana Skripkina, Olga Gaskova, and Ekaterina Podgorbunskikh. 2022. "Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions" Water 14, no. 13: 2114. https://doi.org/10.3390/w14132114
APA StyleShvartseva, O., Skripkina, T., Gaskova, O., & Podgorbunskikh, E. (2022). Modification of Natural Peat for Removal of Copper Ions from Aqueous Solutions. Water, 14(13), 2114. https://doi.org/10.3390/w14132114