Study on Urban Rainfall–Runoff Model under the Background of Inter-Basin Water Transfer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. GR3
2.3. Processing of Inter-Basin Water Transfer and Integration into GR3 Model
2.3.1. Downscaling of Inter-Basin Water Transfer
2.3.2. Integrating Inter-Basin Water Transfer into GR3
2.4. Model Setup and Data Processing
2.5. Model Evaluation Methods
3. Results
3.1. Long-Time Series Simulation Results
3.2. Single Flood Simulation Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, R.L. Integrated, watershed-based management for sustainable water resources. Front. Earth Sci. China 2010, 4, 117–125. [Google Scholar]
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [PubMed]
- Hashem, M.S.; Qi, X. Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. [Google Scholar]
- Wang, J.; Hou, B.; Jiang, D.; Xiao, W.; Wu, Y.; Zhao, Y.; Zhou, Y.; Guo, C.; Wang, G. Optimal Allocation of Water Resources Based on Water Supply Security. Water 2016, 8, 237. [Google Scholar]
- Dou, X. China’s inter-basin water management in the context of regional water shortage. Sustain. Water Resour. Manag. 2018, 4, 519–526. [Google Scholar]
- Li, T.; Qiu, S.; Mao, S.; Bao, R.; Deng, H. Evaluating Water Resource Accessibility in Southwest China. Water 2019, 11, 1708. [Google Scholar] [CrossRef]
- Geng, Q.; Liu, H.; He, X.; Tian, Z. Integrating Blue and Green Water to Identify Matching Characteristics of Agricultural Water and Land Resources in China. Water 2022, 14, 685. [Google Scholar]
- Di, D.; Wu, Z.; Guo, X.; Lv, C.; Wang, H. Value Stream Analysis and Emergy Evaluation of the Water Resource Eco-Economic System in the Yellow River Basin. Water 2019, 11, 710. [Google Scholar] [CrossRef]
- Song, P.; Wang, C.; Zhang, W.; Liu, W.; Sun, J.; Wang, X.; Lei, X.; Wang, H. Urban Multi-Source Water Supply in China: Variation Tendency, Modeling Methods and Challenges. Water 2020, 12, 1199. [Google Scholar]
- Hattingh, J.; Maree, G.A.; Ashton, P.J.; Leaner, J.J.; Rascher, J.; Turton, A.R. Introduction to ecosystem governance: Focusing on Africa. Water Policy 2007, 9, 5–10. [Google Scholar]
- Su, D.; Zhang, Q.H.; Ngo, H.H.; Dzakpasu, M.; Guo, W.S.; Wang, X.C. Development of a water cycle management approach to Sponge City construction in Xi’an, China. Sci. Total Environ. 2019, 685, 490–496. [Google Scholar] [PubMed]
- Sun, W.; Ren, J.M. Development and Utilization Status in the Basin of Shiyang River and Water Quality Evaluation. Appl. Mech. Mater. 2012, 212, 482–486. [Google Scholar] [CrossRef]
- Ni, L.; Fan, M.; Qu, S.; Zheng, Q. Based on GMS management of shallow groundwater resource in Ningjin, China. IOP Conf. Ser. Earth Environ. Science 2019, 237, 32063. [Google Scholar] [CrossRef]
- Li, F.; Yan, W.; Zhao, Y.; Jiang, R. The regulation and management of water resources in groundwater over-extraction area based on ET. Theor. Appl. Climatol. 2021, 146, 57–69. [Google Scholar]
- Jia, X.; O’Connor, D.; Hou, D.; Jin, Y.; Li, G.; Zheng, C.; Ok, Y.S.; Tsang, D.C.W.; Luo, J. Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Sci. Total Environ. 2019, 672, 551–562. [Google Scholar]
- Wang, H.; Wang, Y.; Jiao, X.; Qian, G. Risk management of land subsidence in Shanghai. Desalin. Water Treat. 2014, 52, 1122–1129. [Google Scholar]
- Fan, Y.; Lu, W.; Miao, T.; Li, J.; Lin, J. Multiobjective optimization of the groundwater exploitation layout in coastal areas based on multiple surrogate models. Environ. Sci. Pollut. R 2020, 27, 19561–19576. [Google Scholar]
- Bozorg-Haddad, O.; Abutalebi, M.; Chu, X.; Loáiciga, H.A. Assessment of potential of intraregional conflicts by developing a transferability index for inter-basin water transfers, and their impacts on the water resources. Environ. Monit. Assess 2019, 192, 40. [Google Scholar] [PubMed]
- Zhang, C.; Wang, G.; Peng, Y.; Tang, G.; Liang, G. A Negotiation-Based Multi-Objective, Multi-Party Decision-Making Model for Inter-Basin Water Transfer Scheme Optimization. Water Resour. Manag. 2012, 26, 4029–4038. [Google Scholar]
- Wang, Q.; Zhou, H.; Liang, G.; Xu, H. Optimal Operation of Bidirectional Inter-Basin Water Transfer-Supply System. Water Resour. Manag. 2015, 29, 3037–3054. [Google Scholar] [CrossRef]
- Wang, Q.W.; Sun, R.R.; Guo, W.P. Study on Three-Dimensional Visual Simulation for Inter-Basin Water Transfer Project. Appl. Mech. Mater. 2013, 256, 2523–2527. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Loáiciga, H.A.; Zhuang, Y.; Du, Y. Opportunities and challenges of interbasin water transfers: A literature review with bibliometric analysis. Scientometrics 2015, 105, 279–294. [Google Scholar]
- Essenfelder, A.H.; Giupponi, C. A coupled hydrologic-machine learning modelling framework to support hydrologic modelling in river basins under Interbasin Water Transfer regimes. Environ. Modell. Softw. 2020, 131, 104779. [Google Scholar]
- Woo, S.; Kim, S.; Lee, J.; Kim, S.; Kim, Y. Evaluating the impact of interbasin water transfer on water quality in the recipient river basin with SWAT. Sci. Total Environ. 2021, 776, 145984. [Google Scholar] [PubMed]
- Tien Bui, D.; Talebpour Asl, D.; Ghanavati, E.; Al-Ansari, N.; Khezri, S.; Chapi, K.; Amini, A.; Thai Pham, B. Effects of Inter-Basin Water Transfer on Water Flow Condition of Destination Basin. Sustainability 2020, 12, 338. [Google Scholar] [CrossRef]
- Cao, Y.; Chang, J.; Huang, Q.; Chen, X.; Chen, Y. Study of Discharge Model in South-to-North Water Diversion Middle Route Project Based on Radial Basis Function Neural Network. MATEC Web Conf. 2016, 68, 14011. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G. Influence of south-to-north water diversion on major cones of depression in North China Plain. Environ. Earth Sci. 2014, 71, 3845–3853. [Google Scholar] [CrossRef]
- Guo, Y.C.; Li, J.F.; Li, J.L. Agent Construction System Application and Improvement Discussion in the South-to-North Water Diversion Project. Appl. Mech. Mater. 2012, 105, 1096–1099. [Google Scholar] [CrossRef]
- Arthington, A.H.; Pusey, B.J. Flow restoration and protection in Australian rivers. River Res. Appl. 2003, 19, 377–395. [Google Scholar]
- Qin, G.; Liu, J.; Wang, T.; Xu, S.; Su, G. An Integrated Methodology to Analyze the Total Nitrogen Accumulation in a Drinking Water Reservoir Based on the SWAT Model Driven by CMADS: A Case Study of the Biliuhe Reservoir in Northeast China. Water 2018, 10, 1535. [Google Scholar]
- Clark, W.A.; Wang, G.A. Conflicting Attitudes Toward Inter-basin Water Transfers in Bulgaria. Water Int. 2003, 28, 79–89. [Google Scholar] [CrossRef]
- Safavi, H.R.; Golmohammadi, M.H.; Sandoval-Solis, S. Expert knowledge based modeling for integrated water resources planning and management in the Zayandehrud River Basin. J. Hydrol. 2015, 528, 773–789. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Liu, K.; Cheng, L.; Wang, L.; Ye, A. Impacts of the eastern route of the South-to-North Water Diversion Project emergency operation on flooding and drainage in water-receiving areas: An empirical case in China. Nat. Hazard Earth Sys. 2019, 19, 555–570. [Google Scholar] [CrossRef]
- Du, J.; Qian, L.; Rui, H.; Zuo, T.; Zheng, D.; Xu, Y.; Xu, C.Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J Hydrol 2012, 464, 127–139. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef]
- Hu, C.; Liu, C.; Yao, Y.; Wu, Q.; Ma, B.; Jian, S. Evaluation of the Impact of Rainfall Inputs on Urban Rainfall Models: A Systematic Review. Water 2020, 12, 2484. [Google Scholar] [CrossRef]
- Bulti, D.T.; Abebe, B.G. A review of flood modeling methods for urban pluvial flood application. Modeling Earth Syst. Environ. 2020, 6, 1293–1302. [Google Scholar] [CrossRef]
- Jillo, A.Y.; Demissie, S.S.; Viglione, A.; Asfaw, D.H.; Sivapalan, M. Characterization of regional variability of seasonal water balance within Omo-Ghibe River Basin, Ethiopia. Hydrol. Sci. J. 2017, 62, 1200–1215. [Google Scholar] [CrossRef]
- Ismaiylov, G.K.; Fedorov, V.M. Year to year variations in water balance components in the Volga Basin and their interaction. Water Resour. 2008, 35, 247–263. [Google Scholar] [CrossRef]
- Chen, H.; Xu, C.; Guo, S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. J. Hydrol. 2012, 434, 36–45. [Google Scholar] [CrossRef]
- Razavi, T.; Coulibaly, P. Streamflow Prediction in Ungauged Basins: Review of Regionalization Methods. J. Hydrol. Eng. 2013, 18, 958–975. [Google Scholar] [CrossRef]
- Hromadka, T.V., II; Whitley, R.J. Approximating Rainfall-Runoff Modelling Response Using a Stochastic Integral Equation. Hydrol. Process. 1996, 10, 1003–1019. [Google Scholar] [CrossRef]
- Lee, M.; Kang, N.; Joo, H.; Kim, H.S.; Kim, S.; Lee, J. Hydrological Modeling Approach Using Radar-Rainfall Ensemble and Multi-Runoff-Model Blending Technique. Water 2019, 11, 850. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X. A Three-parameter Hydrological Model and Its Application in China. J. China Hydrol. 2015, 35, 17–21. [Google Scholar]
- Xu, S.; Yang, X. Comparison between GR3 Model and Xin’anjiang Model in Application for Watersheds in China. J. China Hydrol. 2015, 35, 7–13. [Google Scholar]
- Hu, C.; Guo, S.; Xiong, L.; Peng, D. A modified Xinanjiang model and its application in northern China. Hydrol. Res. 2005, 36, 175–192. [Google Scholar] [CrossRef]
- Ren-Jun, Z. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Zhang, J.; Flury, M. Coupling the Xinanjiang model to a kinematic flow model based on digital drainage networks for flood forecasting. Hydrol. Process. 2009, 23, 1337–1348. [Google Scholar] [CrossRef]
- Zhuo, L.; Han, D. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling. J. Hydrol. 2016, 535, 637–651. [Google Scholar] [CrossRef]
- Tran, Q.Q.; De Niel, J.; Willems, P. Spatially Distributed Conceptual Hydrological Model Building: A Generic Top-Down Approach Starting from Lumped Models. Water Resour. Res. 2018, 54, 8064–8085. [Google Scholar] [CrossRef]
- Guo, W.; Wang, C.; Ma, T.; Zeng, X.; Yang, H. A distributed Grid-Xinanjiang model with integration of subgrid variability of soil storage capacity. Water Sci. Eng. 2016, 9, 97–105. [Google Scholar] [CrossRef]
- Guo, W.; Wang, C.; Zeng, X.; Ma, T.; Yang, H. Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed Rainfall-Runoff Model. Water 2015, 7, 2691–2706. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Zhang, F.; Zhang, L. Study on dynamic relationship of spring water in Jinan spring area based on gray relational analysis. IOP Conf. Ser. Earth Environ. Sci. 2018, 128, 12068. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C. Carrying Capacity Assessment of Water Environment in Jinan. Enuivonmental Sci. Technol. 2011, 34, 199–202. [Google Scholar]
- Wu, Y.; Ma, Z.; Li, X.; Sun, L.; Sun, S.; Jia, R. Assessment of water resources carrying capacity based on fuzzy comprehensive evaluation–Case study of Jinan, China. Water Supply 2020, 21, 513–524.59. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, W.; Zhang, W.; Wang, C.; Wang, P. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China. Water Res. 2016, 89, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, Y.; Zhou, B. The Yellow River:A key of Eco-City Construction in Jian City in New Century. Bull. Soil Water Conserv. 2004, 24, 68–71, 78. [Google Scholar]
- Cheng, T.; Xu, Z.; Hong, S.; Song, S.; Zhou, J.G. Flood Risk Zoning by Using 2D Hydrodynamic Modeling: A Case Study in Jinan City. Math Probl. Eng. 2017, 2017, 5659197. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xia, J.; Xu, Z.; Zou, L.; Qiao, Y.; Li, P. Impact of Urban Expansion on Rain Island Effect in Jinan City, North China. Remote Sens. 2021, 13, 2989. [Google Scholar] [CrossRef]
- Xu, J.; Bi, B.; Shen, Y. Analysis on Mesoscale Mechanism of Heavy Rainstorm in Jinan on 18 July 2007. Plateau Meteorol. 2010, 29, 1218–1229. [Google Scholar]
- Chang, X.; Xu, Z.; Zhao, G.; Cheng, T.; Song, S. Spatial and temporal variations of precipitation during 1979–2015 in Jinan City, China. J. Water Clim. Change 2017, 9, 540–554. [Google Scholar] [CrossRef]
- Wang, C.X.; Liu, L.Y. Empirical Research on the Impact to City Climate Caused by Urbanization–A Case of Jinan City. Appl. Mech. Mater. 2013, 295, 2669–2674. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Wang, W.P.; Deng, H.Y. Study on Ecological Effect of Urban Landscape Water in Jinan, Shandong Province. Appl. Mech. Mater. 2014, 675, 826–829. [Google Scholar] [CrossRef]
- Hawker, L.; Uhe, P.; Paulo, L.; Sosa, J.; Savage, J.; Sampson, C.; Neal, J. A 30 m global map of elevation with forests and buildings removed. Environ Res Lett 2022, 17, 24016. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Edijatno; Nascimento, N.D.; Yang, X.L.; Makhlouf, Z.; Michel, C. GR3J: A daily watershed model with three free parameters. Hydrolog. Sci. J. 1999, 44, 263–277. [Google Scholar] [CrossRef]
- Borchani, H.; Chaouachi, M.; Ben Amor, N. Learning causal Bayesian networks from incomplete observational data and interventions. In Proceedings of the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Hammamet, Tunisia, 31 October–2 November 2007; Mellouli, K., Ed.; 2007; Volume 4724, p. 17. [Google Scholar]
- Li, Y.; Ma, B.; Peng, X. Research on Hydraulic Factors of Water Conveyance Buried Culvert in Jinan Urban Section of Eastern Route of South-North Water Diversion. China Water Wastewater 2014, 30, 58–61. [Google Scholar]
- Dong, N.; Tian, A.; Jiang, F. A Study on Strategy for Sustainable Use of Water Resources in Jinan City. Shanghai Environ. Sci. 2010, 29, 169–173. [Google Scholar]
- Liu, Y.; Zhang, Z.; Zhang, F.; Liu, B. Coupling Correlation Measure and Prospect Forecast of Water Resources Environment and Economic Development in Jinan. J. Yangtze River Sci. Res. Inst. 2020, 37, 28–33. [Google Scholar]
- Gu, J.; Liu, H.; Wang, S.; Zhang, M.; Liu, Y. An innovative anaerobic MBR-reverse osmosis-ion exchange process for energy-efficient reclamation of municipal wastewater to NEWater-like product water. J. Clean Prod. 2019, 230, 1287–1293. [Google Scholar] [CrossRef]
- Villamar, C.; Vera-Puerto, I.; Rivera, D.; De la Hoz, F. Reuse and Recycling of Livestock and Municipal Wastewater in Chilean Agriculture: A Preliminary Assessment. Water 2018, 10, 817. [Google Scholar] [CrossRef]
- Ren, Y.; Su, X.; He, Y.; Wang, X.; Ouyang, Z. Urban water resource utilization efficiency and its influencing factors in ecogeographic regions of China. Acta Ecol. Sin. 2020, 40, 6459–6471. [Google Scholar]
- Knoben, W.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sc. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, I.V. River flow forecasting through conceptual models. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X. A Coupled Hydrologic-Hydraulic Model (XAJ-HiPIMS) for Flood Simulation. Water 2020, 12, 1288. [Google Scholar] [CrossRef]
Parameters | Units | Physical Meaning | 80% Confidence Interval |
---|---|---|---|
A | mm | Maximum water depth of the runoff generation tank | (100, 1500) |
B | mm | Maximum water depth of the runoff routing tank | (20, 600) |
C | The length of time period in model calculation | The number of unit line periods | (1.1, 2.9) |
Use of Inter-Basin Water Transfer | Domestic Water | Irrigation Water | Industrial Water | Channel Filling Water |
---|---|---|---|---|
Multiyear average (%) | 37 | 13 | 21 | 29 |
Flood Process | Rainfall Depth (mm) | Peak Flow (m3/s) | The Size of the Flood |
---|---|---|---|
20050817 | 37.63 | 33.60 | Small |
20070815 | 77.83 | 47.75 | |
20040511 | 43.84 | 48.30 | |
20080813 | 31.63 | 51.60 | |
20160712 | 39.82 | 53.00 | |
20110818 | 82.23 | 54.90 | |
20160806 | 54.99 | 74.60 | |
20160720 | 76.11 | 82.96 | Medium |
20090817 | 70.02 | 84.70 | |
20060804 | 71.00 | 92.50 | |
20080718 | 117.08 | 110.00 | |
20170706 | 42.00 | 111.00 | |
20160801 | 62.95 | 116.17 | |
20040717 | 124.34 | 124.69 | |
20150730 | 76.30 | 133.62 | Big |
20140619 | 119.28 | 144.00 | |
20100819 | 248.83 | 161.00 | |
20130723 | 88.40 | 168.50 | |
20160816 | 96.79 | 169.00 | |
20070718 | 126.39 | 202.00 | |
20120708 | 179.33 | 209.67 |
Model | 2004–2010 (Calibration) | 2011–2017 (Validation) | ||
---|---|---|---|---|
NSE | RE | NSE | RE | |
GR3 | −0.98 | −0.86 | −1.67 | −0.90 |
GR3-ibwt | 0.77 | −0.06 | 0.70 | −0.04 |
FP NO. | Peak Discharge (m³/s) | NSE | RE | PE | DPAT (hour) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
O | H | C | H | C | H | C | H | C | H | C | |
20050817(S) | 33.60 | 29.97 | 34.24 | −1.01 | 0.50 | −0.33 | 0.09 | −0.11 | 0.02 | −3 | 0 |
20070815(S) | 47.75 | 47.33 | 53.92 | 0.07 | 0.76 | −0.32 | 0.10 | −0.01 | 0.13 | −2 | −2 |
20040511(S) | 48.30 | 10.25 | 28.17 | −1.92 | 0.54 | −0.77 | −0.07 | −0.79 | −0.42 | −3 | −1 |
20080813(S) | 51.60 | 42.38 | 63.17 | 0.33 | 0.66 | −0.34 | 0.18 | −0.18 | 0.22 | −2 | −2 |
20160712(S) | 53.00 | 7.58 | 30.53 | −1.75 | 0.60 | −0.88 | −0.14 | −0.86 | −0.42 | −2 | −2 |
20110818(S) | 54.90 | 40.36 | 55.15 | −0.34 | 0.92 | −0.45 | −0.07 | −0.26 | 0.00 | −1 | −1 |
20160806(S) | 74.60 | 33.77 | 48.33 | −0.17 | 0.74 | −0.46 | −0.03 | −0.55 | −0.35 | −1 | −1 |
20160720(M) | 82.95 | 37.17 | 65.49 | −0.37 | 0.84 | −0.54 | −0.11 | −0.55 | −0.21 | 1 | 1 |
20090817(M) | 84.70 | 48.31 | 79.82 | −0.39 | 0.92 | −0.57 | 0.00 | −0.43 | −0.06 | −1 | −1 |
20060804(M) | 92.50 | 88.11 | 95.55 | 0.73 | 0.87 | −0.12 | 0.06 | −0.05 | 0.03 | −4 | −1 |
20080718(M) | 110.00 | 90.10 | 122.44 | 0.37 | 0.71 | −0.33 | 0.01 | −0.18 | 0.11 | 3 | −1 |
20170706(M) | 111.00 | 34.62 | 66.37 | −0.02 | 0.58 | −0.53 | 0.01 | −0.69 | −0.40 | −2 | −2 |
20160801(M) | 116.17 | 42.51 | 88.80 | −0.20 | 0.70 | −0.54 | −0.12 | −0.63 | −0.24 | −5 | −2 |
20040717(M) | 124.69 | 120.18 | 106.26 | 0.72 | 0.78 | −0.19 | −0.16 | −0.04 | −0.15 | −2 | −2 |
20150730(B) | 133.62 | 43.56 | 82.28 | 0.21 | 0.78 | −0.59 | 0.09 | −0.67 | −0.38 | −2 | −1 |
20140619(B) | 144.00 | 65.62 | 157.14 | 0.05 | 0.75 | −0.43 | 0.01 | −0.54 | 0.09 | 7 | −2 |
20100819(B) | 161.00 | 118.77 | 140.55 | 0.46 | 0.78 | −0.40 | −0.18 | −0.26 | −0.13 | 15 | −2 |
20130723(B) | 168.50 | 159.56 | 169.43 | 0.74 | 0.83 | −0.20 | −0.02 | −0.05 | 0.01 | −2 | −2 |
20160816(B) | 169.00 | 140.91 | 155.91 | 0.77 | 0.81 | −0.07 | 0.12 | −0.17 | −0.08 | −2 | −2 |
20070718(B) | 202.00 | 100.63 | 176.25 | 0.43 | 0.89 | −0.59 | −0.14 | −0.50 | −0.13 | −1 | −1 |
20120708(B) | 209.67 | 102.20 | 142.85 | 0.44 | 0.82 | −0.37 | −0.10 | −0.51 | −0.32 | −1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Xu, C.; Ni, X.; Zhang, X. Study on Urban Rainfall–Runoff Model under the Background of Inter-Basin Water Transfer. Water 2022, 14, 2660. https://doi.org/10.3390/w14172660
Yang J, Xu C, Ni X, Zhang X. Study on Urban Rainfall–Runoff Model under the Background of Inter-Basin Water Transfer. Water. 2022; 14(17):2660. https://doi.org/10.3390/w14172660
Chicago/Turabian StyleYang, Jiashuai, Chaowei Xu, Xinran Ni, and Xuantong Zhang. 2022. "Study on Urban Rainfall–Runoff Model under the Background of Inter-Basin Water Transfer" Water 14, no. 17: 2660. https://doi.org/10.3390/w14172660
APA StyleYang, J., Xu, C., Ni, X., & Zhang, X. (2022). Study on Urban Rainfall–Runoff Model under the Background of Inter-Basin Water Transfer. Water, 14(17), 2660. https://doi.org/10.3390/w14172660