Identification of Time-Varying Parameters of Distributed Hydrological Model in Wei River Basin on Loess Plateau in the Changing Environment
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
4. Results
4.1. Spatial Distribution of Meteorological Factors
4.2. Interannual Changes of the Environmental Factors
4.3. Simulation of the Hydrological Process
4.4. Time-Varying Parameters of the Hydrological Model
4.5. Analysis of the Relationship between Model Parameters and Environmental Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Q.H. Global change hydrology: Terrestrial water cycle and global chang. Sci. China Earth Sci. 2020, 63, 459–462. [Google Scholar] [CrossRef]
- Campbell, J.L.; Driscoll, C.T.; Pourmokhtarian, A.; Hayhoe, K. Streamflow responses to past and projected future changes in climate at the Hubbard Brook Experimental Forest, New Hampshire, United States. Water Resour. Res. 2011, 47, 1198–1204. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, D.; Zhang, H.; Huang, Q.; Meng, X. Impact of climate change and human activities on runoff variation in Beiluo River basin. J. Hydroelectr. Eng. 2016, 35, 55–66. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, NY, USA, 2013. [Google Scholar]
- Dore, M.H.I. Climate change and changes in global precipitation patterns: What do we know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Jingyi, D.I.N.G.; Wenwu, Z.H.A.O.; Jun, W.A.N.G. Scale effect of the impact on runoff of variations in precipitation/vegetation: Taking northern Shaanxi loess hilly-gully region as an example. Prog. Geogr. 2015, 34, 1039–1051. [Google Scholar]
- Brown, A.E.; Western, A.W.; McMahon, T.A.; Zhang, L. Impact of forest cover changes on annual streamflow and flow duration curves. J. Hydrol. 2013, 483, 39–50. [Google Scholar] [CrossRef]
- Coe, M.T.; Latrubesse, E.M.; Ferreira, M.E.; Amsler, M.L. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 2011, 105, 119–131. [Google Scholar] [CrossRef]
- Collier, C.G. The impact of urban areas on weather. Q. J. R. Meteorol. Soc. 2006, 132, 1–25. [Google Scholar] [CrossRef]
- Cheng, C.K.M.; Chan, J.C.L. Impacts of land use changes and synoptic forcing on the seasonal climate over the Pearl River Delta of China. Atmos. Environ. 2012, 60, 25–36. [Google Scholar] [CrossRef]
- Weiskel, P.K.; Vogel, R.M.; Steeves, P.A.; Zarriello, P.J.; DeSimone, L.A.; Ries, K., III. Water use regimes: Characterizing direct human interaction with hydrologic systems. Water Resour. Res. 2007, 43, W04402. [Google Scholar] [CrossRef] [Green Version]
- Patterson, L.A.; Lutz, B.; Doyle, M.W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour. Res. 2013, 49, 7278–7291. [Google Scholar] [CrossRef]
- Milly, P.C.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Lihua, X.I.O.N.G.; Shuonan, L.I.U.; Bin, X.I.O.N.G.; Wentao, X.U. Impacts of vegetation and human activities on temporal variation of the parameters in a monthly water balance model. Adv. Water Sci. 2018, 29, 625–635. [Google Scholar]
- Liu, S.N. Temporal Variation of the Parameters in a Monthly Water Balance Model; Wuhan University: Wuhan, China, 2019. [Google Scholar]
- Wang, J.; Wang, Z.; Cheng, H.; Kang, J.; Liu, X. Land Cover Changing Pattern in Pre-and Post-Earthquake Affected Area from Remote Sensing Data: A Case of Lushan County, Sichuan Province. Land 2022, 11, 1205. [Google Scholar] [CrossRef]
- Kang, J.; Wang, Z.; Cheng, H.; Wang, J.; Liu, X. Remote Sensing Land Use Evolution in Earthquake-Stricken Regions of Wenchuan County, China. Sustainability 2022, 14, 9721. [Google Scholar] [CrossRef]
- Deng, C. Study of Temporal Variability of Model Parameters in Monthly Water Balance Modeling; Wuhan University: Wuhan, China, 2017. [Google Scholar]
- Kingumbi, A.; Bargaoui, Z.; Ledoux, E.; Besbes, M.; Hubert, P. Hydrological stochastic modelling of a basin affected by land-use changes: Case of the Merguellil basin in central Tunisia. Hydrol. Sci. J. 2007, 52, 1232–1252. [Google Scholar] [CrossRef]
- Vaze, J.; Post, D.A.; Chiew FH, S.; Perraud, J.M.; Viney, N.R.; Teng, J. Climate non-stationarity-validity of calibrated rainfall–runoff models for use in climate change studies. J. Hydrol. 2010, 394, 447–457. [Google Scholar] [CrossRef]
- Merz, R.; Parajka, J.; Blöschl, G. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resour. Res. 2011, 47, 2144–2150. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y. Time Instability of Hydrological Model Parameters under Changing Environment; Tsinghua University: Beijing, China, 2015. [Google Scholar]
- Brigode, P.; Oudin, L.; Perrin, C. Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change? J. Hydrol. 2013, 476, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Wallner, M.; Haberlandt, U. Non-stationary hydrological model parameters: A framework based on SOM-B. Hydrol. Process. 2015, 29, 3145–3161. [Google Scholar] [CrossRef]
- Wu, H.Z.; Liu, D.F.; Huang, Q.; Zheng, H.W.; Zou, H.; Ye, N.; Lin, M. Study on accuracy evaluation and substitutability of multiple precipitation products on Loess Plateau. J. Hydroelectr. Eng. 2021, 40, 31–40. [Google Scholar]
- Jiang, Y.; Xu, Z.X.; Wang, J. Comparison among five methods of trend detection for annual runoff series. Shuili Xuebao 2020, 51, 845–857. [Google Scholar]
- Zhang, Y.H.; Song, X.F. Techniques of abrupt change detection and trends analysis in hydroclimatic time-series: Advances and evaluation. Arid. Land Geogr. 2015, 38, 652–665. [Google Scholar]
- Hotchkiss, R.H.; Jorgensen, S.F.; Stone, M.C.; Fontaine, T.A. Regulated river modeling for climate change impact assessment: The Missouri river. J. Am. Water Resour. Assoc. 2000, 36, 375–386. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Chaefli, B.; Gupta, H.V. Do Nash values have value. Hydrol. Process. Int. J. 2007, 21, 2075–2080. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
Period | R2 | NSE | KGE |
---|---|---|---|
Calibration period (2002–2013) | 0.58 | 0.54 | 0.70 |
Verification period (2014–2017) | 0.31 | 0.19 | 0.54 |
Year | R2 | NSE | KGE |
---|---|---|---|
2002 | 0.33 | 0.26 | 0.53 |
2003 | 0.74 | 0.73 | 0.77 |
2004 | 0.34 | 0.34 | 0.44 |
2005 | 0.56 | 0.53 | 0.71 |
2006 | 0.56 | 0.55 | 0.67 |
2007 | 0.42 | 0.42 | 0.52 |
2008 | 0.37 | 0.33 | 0.55 |
2009 | 0.30 | 0.15 | 0.55 |
2010 | 0.61 | 0.59 | 0.67 |
2011 | 0.53 | 0.52 | 0.58 |
2012 | 0.68 | 0.66 | 0.82 |
2013 | 0.64 | 0.62 | 0.79 |
2014 | 0.50 | 0.42 | 0.70 |
2015 | 0.45 | 0.44 | 0.62 |
2016 | 0.36 | 0.35 | 0.47 |
2017 | 0.29 | 0.12 | 0.53 |
R2 | Precipitation | Potential Evapotranspiration | NDVI |
---|---|---|---|
the number of runoff curves (CN2) | 0.0032 | 0.0634 | 0.0003 |
the soil evaporation compensation coefficient (ESCO) | 0.0008 | 0.4463 * | 0.4402 * |
the Manning coefficient of the main channel (CH_N2) | 0.3364 * | 0.2062 | 0.0009 |
the baseflow α factor of riparian regulation and storage (ALPHA_BNK) | 0.1036 | 0.5453 * | 0.2563 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Liu, D.; Hao, M.; Li, R.; Yang, Q.; Ming, G.; Liu, H. Identification of Time-Varying Parameters of Distributed Hydrological Model in Wei River Basin on Loess Plateau in the Changing Environment. Water 2022, 14, 4021. https://doi.org/10.3390/w14244021
Wu H, Liu D, Hao M, Li R, Yang Q, Ming G, Liu H. Identification of Time-Varying Parameters of Distributed Hydrological Model in Wei River Basin on Loess Plateau in the Changing Environment. Water. 2022; 14(24):4021. https://doi.org/10.3390/w14244021
Chicago/Turabian StyleWu, Haizhe, Dengfeng Liu, Ming Hao, Ruisha Li, Qian Yang, Guanghui Ming, and Hui Liu. 2022. "Identification of Time-Varying Parameters of Distributed Hydrological Model in Wei River Basin on Loess Plateau in the Changing Environment" Water 14, no. 24: 4021. https://doi.org/10.3390/w14244021
APA StyleWu, H., Liu, D., Hao, M., Li, R., Yang, Q., Ming, G., & Liu, H. (2022). Identification of Time-Varying Parameters of Distributed Hydrological Model in Wei River Basin on Loess Plateau in the Changing Environment. Water, 14(24), 4021. https://doi.org/10.3390/w14244021