A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries
Abstract
:1. Introduction
2. Microbial Biodegradation and Decolourization of Textile Dyes
2.1. Bioremediation of Dyes by Actinomycetes
2.2. Bioremediation of Dyes by Aerobic Bacteria
2.3. Mechanism of Bioremediation
3. Fungi-Based Bioremediation of Dyes
3.1. White Rot Fungi (WRF)
3.2. Remediation by Non-WRF
4. Algae-Based Bioremediation of Textile Dyes
5. Enzyme-Based Bioremediation of Dyes
6. Gaps and Future Prospects and Advantages of Microbial Degradation of Dyes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manzoor, J.; Sharma, M. Impact of Textile Dyes on Human Health and Environment. In Impact of Textile Dyes on Public Health and the Environment; Wani, K.A., Jangid, N.K., Bhat, A.R., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 162–169. [Google Scholar] [CrossRef]
- Halim, A.F.M.F.; Islam, M.T.; Hoque, M.M.U. Chapter 4—Chemistry of sustainable coloration of textile materials. In Green Chemistry for Sustainable Textiles; Ibrahim, N., Hussain, C.M., Eds.; Woodhead Publishing: Sawstone, UK, 2021; pp. 57–67. [Google Scholar] [CrossRef]
- Rudakiya, D.M.; Tripathi, A.; Gupte, S.; Gupte, A. Fungal Bioremediation: A Step Towards Cleaner Environment. In Advancing Frontiers in Mycology & Mycotechnology: Basic and Applied Aspects of Fungi; Satyanarayana, T., Deshmukh, S.K., Deshpande, M.V., Eds.; Springer: Singapore, 2019; pp. 229–249. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, K.; Gupta, S.P. Structure and Properties of Dyes and Pigments. In Dyes and Pigments; Dixit, U., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 8. [Google Scholar] [CrossRef]
- Samsami, S.; Mohamadi, M.; Sarrafzadeh, M.H.; Rene, E.R.; Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Saf. Environ. Prot. 2020, 143, 138–163. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Maulidiany, N.; Zeng, P.; Heo, S. Decolourization of azo, anthraquinone and triphenylmethane dyes using aerobic granules: Acclimatization and long-term stability. Chemosphere 2021, 263, 128312. [Google Scholar] [CrossRef] [PubMed]
- Gürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M.S. (Eds.) Dyes and Pigments: Their Structure and Properties. In Dyes and Pigments; Springer International Publishing: Cham, Switzerland, 2016; pp. 13–29. [Google Scholar] [CrossRef]
- Chequer, F.M.D.; Ferraz, E.R.A.; Cardoso, J.C. Textile Dyes: Dyeing Process and Environmental Impact. In Eco-Friendly Textile Dyeing and Finishing; de Oliveira, G.A.R., Ed.; IntechOpen: Rijeka, Croatia, 2013; Chapter 6. [Google Scholar] [CrossRef] [Green Version]
- Soleimani-Gorgani, A.; Taylor, J.A. Dyeing of nylon with reactive dyes. Part 1. The effect of changes in dye structure on the dyeing of nylon with reactive dyes. Dye. Pigment. 2006, 68, 109–117. [Google Scholar] [CrossRef]
- Yadav, V.K.; Choudhary, N.; Ali, D.; Kumar, G.; Gnanamoorthy, G.; Khan, A.U.; Kumar, P.; Hari Kumar, S.; Tizazu, B.Z. Determination of Adsorption of Methylene Blue Dye by Incense Stick Ash Waste and Its Toxicity on RTG-2 Cells. Adsorpt. Sci. Technol. 2022, 2022, 8565151. [Google Scholar] [CrossRef]
- Bharathi, D.; Nandagopal, J.G.T.; Ranjithkumar, R.; Gupta, P.K.; Djearamane, S. Microbial approaches for sustainable remediation of dye-contaminated wastewater: A review. Arch. Microbiol. 2022, 204, 169. [Google Scholar] [CrossRef]
- Yadav, V.K.; Inwati, G.K.; Ali, D.; Gnanamoorthy, G.; Bera, S.P.; Khan, S.H.; Choudhary, N.; Kumar, G.; Chaurasia, T.P.; Basnet, A. Remediation of Azure A Dye from Aqueous Solution by Using Surface-Modified Coal Fly Ash Extracted Ferrospheres by Mineral Acids and Toxicity Assessment. Adsorpt. Sci. Technol. 2022, 2022, 7012889. [Google Scholar] [CrossRef]
- Wang, L.K.; Wang, M.-H.S.; Shammas, N.K.; Hahn, H.H. Physicochemical Treatment Consisting of Chemical Coagulation, Precipitation, Sedimentation, and Flotation. In Integrated Natural Resources Research; Wang, L.K., Wang, M.-H.S., Hung, Y.-T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 265–397. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, V.K.; Ali, D.; Soni, S.; Kumar, G.; Dawane, V.; Chaurasia, T.P. Isolation and Characterization of Siderophores Producing Chemolithotrophic Bacteria from the Coal Samples of the Aluminum Industry. Geomicrobiol. J. 2022, 1–7. [Google Scholar] [CrossRef]
- Ekanayake, M.S.; Udayanga, D.; Manage, P.M. Mycoremediation of Synthetic Textile Dyes by Fungi Isolated from Textile Wastewater Effluent and Soil. In Mycoremediation Protocols; Udayanga, D., Bhatt, P., Manamgoda, D., Saez, J.M., Eds.; Springer: New York, NY, USA, 2022; pp. 31–43. [Google Scholar] [CrossRef]
- Bhardwaj, D.; Bharadvaja, N. Phycoremediation of effluents containing dyes and its prospects for value-added products: A review of opportunities. J. Water Process Eng. 2021, 41, 102080. [Google Scholar] [CrossRef]
- Dhanve, R.S.; Kalyani, D.C.; Phugare, S.S.; Jadhav, J.P. Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of reactive yellow 84A dye. Biodegradation 2009, 20, 245–255. [Google Scholar] [CrossRef]
- Ji, J.; Kulshreshtha, S.; Kakade, A.; Majeed, S.; Li, X.; Liu, P. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater. Int. Biodeterior Biodegrad. 2020, 150, 104939. [Google Scholar] [CrossRef]
- Kumar, N.; Sinha, S.; Mehrotra, T.; Singh, R.; Tandon, S.; Thakur, I.S. Biodecolorization of azo dye Acid Black 24 by Bacillus pseudomycoides: Process optimization using Box Behnken design model and toxicity assessment. Bioresour. Technol. Rep. 2019, 8, 100311. [Google Scholar] [CrossRef]
- Ayed, L.; Zmantar, T.; Bayar, S.; Cheref, A.; Achour, S.; Mansour, H.B.; Mzoughi, R. Potential use of probiotic consortium isolated from kefir for textile azo dye decolorization. J. Microbiol. Biotechnol. 2019, 29, 1629–1635. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Gacem, A.; Gnanamoorthy, G.; Ali, I.H.; Khan, S.H.; Jeon, B.-H.; Kamyab, H.; Inwati, G.K.; Choudhary, N. A novel approach for the synthesis of vaterite and calcite from incense sticks ash waste and their potential for remediation of dyes from aqueous solution. Sustain. Chem. Pharm. 2022, 29, 100756. [Google Scholar] [CrossRef]
- Patel, Y.; Chhaya, U.; Rudakiya, D.M.; Joshi, S. Biological Decolorization and Degradation of Synthetic Dyes: A Green Step Toward Sustainable Environment. In Microbial Rejuvenation of Polluted Environment; Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2021; Volume 2, pp. 77–110. [Google Scholar] [CrossRef]
- Mansour, A.T.; Alprol, A.E.; Abualnaja, K.M.; El-Beltagi, H.S.; Ramadan, K.M.A.; Ashour, M. The Using of Nanoparticles of Microalgae in Remediation of Toxic Dye from Industrial Wastewater: Kinetic and Isotherm Studies. Materials 2022, 15, 3922. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.; Alprol, A.E.; Heneash, A.M.; Saleh, H.; Abualnaja, K.M.; Alhashmialameer, D.; Mansour, A.T. Ammonia bioremediation from aquaculture wastewater effluents using arthrospira platensis niof17/003: Impact of biodiesel residue and potential of ammonia-loaded biomass as rotifer feed. Materials 2021, 14, 5460. [Google Scholar] [CrossRef]
- Alprol, A.E.; Heneash, A.M.; Ashour, M.; Abualnaja, K.M.; Alhashmialameer, D.; Mansour, A.T.; Sharawy, Z.Z.; Abu-Saied, M.A.; Abomohra, A.E.F. Potential applications of arthrospira platensis lipid-free biomass in bioremediation of organic dye from industrial textile effluents and its influence on marine rotifer (Brachionus plicatilis). Materials 2021, 14, 4446. [Google Scholar] [CrossRef]
- Piaskowski, K.; Świderska-Dąbrowska, R.; Zarzycki, P.K. Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int. 2018, 101, 1371–1384. [Google Scholar] [CrossRef]
- Bafana, A.; Chakrabarti, T.; Muthal, P.; Kanade, G. Detoxification of benzidine-based azo dye by E. gallinarum: Time-course study. Ecotoxicol. Environ. Saf. 2009, 72, 960–964. [Google Scholar] [CrossRef]
- Rane, N.R.; Tapase, S.; Kanojia, A.; Watharkar, A.; Salama, E.S.; Jang, M.; Jeon, B.H. Molecular insights into plant–microbe interactions for sustainable remediation of contaminated environment. Bioresour. Technol. 2022, 344, 126246. [Google Scholar] [CrossRef]
- Dapson, R.W. Benzidine-based dyes: Effects of industrial practices, regulations, and world trade on the biological stains market. Biotech. Histochem. 2009, 84, 95–100. [Google Scholar] [CrossRef]
- Arun Prasad, A.S.; Kumar, G.; Mary Thomas, D. Microbial Decolorization of Azo Dyes—A Mini Review. Bull. Chem. Pharma Res. 2017, 1, 30–39. [Google Scholar]
- Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A.; et al. Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. Materials 2022, 15, 953. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.G.; Ball, A.S.; Reeder, B.J.; Silkstone, G.; Nicholls, P.; Wilson, M.T. Extracellular heme peroxidases in actinomycetes: A case of mistaken identity. Appl. Environ. Microbiol. 2001, 67, 4512–4519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chater, K.F.; Biró, S.; Lee, K.J.; Palmer, T.; Schrempf, H. The complex extracellular biology of Streptomyces: Review article. FEMS Microbiol. Rev. 2010, 34, 171–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fodil, D.; Badis, A.; Jaouadi, B.; Zaraî, N.; Ferradji, F.Z.; Boutoumi, H. Purification and characterization of two extracellular peroxidases from Streptomyces sp. strain AM2, a decolorizing actinomycetes responsible for the biodegradation of natural humic acids. Int. Biodeterior. Biodegrad. 2011, 65, 470–478. [Google Scholar] [CrossRef]
- Blánquez, A.; Rodríguez, J.; Brissos, V.; Mendes, S.; Martins, L.O.; Ball, A.S.; Arias, M.E.; Hernández, M. Decolorization and detoxification of textile dyes using a versatile Streptomyces laccase-natural mediator system. Saudi J. Biol. Sci. 2019, 26, 913–920. [Google Scholar] [CrossRef]
- Dong, H.; Guo, T.; Zhang, W.; Ying, H.; Wang, P.; Wang, Y.; Chen, Y. Biochemical characterization of a novel azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. Int. J. Biol. Macromol. 2019, 140, 1037–1046. [Google Scholar] [CrossRef]
- Adenan, N.H.; Lim, Y.Y.; Ting, A.S.Y. Removal of triphenylmethane dyes by Streptomyces bacillaris: A study on decolorization, enzymatic reactions and toxicity of treated dye solutions. J. Environ. Manag. 2022, 318, 115520. [Google Scholar] [CrossRef]
- Kumar, P.; Gacem, A.; Ahmad, M.T.; Yadav, V.K.; Singh, S.; Yadav, K.K.; Alam, M.M.; Dawane, V.; Piplode, S.; Maurya, P.; et al. Environmental and human health implications of metal(loid)s: Source identification, contamination, toxicity, and sustainable clean-up technologies. Front. Environ. Sci. 2022, 1328. [Google Scholar] [CrossRef]
- Chakravarthi, B.; Mathakala, V.; Palempalli, U.M.D. Bioremediation of Textile Azo Dyes by Marine Streptomyces. In Recent Trends in Waste Water Treatment and Water Resource Management; Ghosh, S.K., das Saha, P., Di Francesco, M., Eds.; Springer: Singapore, 2020; pp. 129–142. [Google Scholar] [CrossRef]
- Zhou, W.; Zimmermann, W. Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol. Lett. 1993, 107, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Adenan, N.H.; Lim, Y.Y.; Ting, A.S.Y. Identification and optimization of triphenylmethane dyes removal by Streptomyces sp. from forest soil. Sustain. Environ. Res. 2021, 31, 1–15. [Google Scholar] [CrossRef]
- John, J.; Dineshram, R.; Hemalatha, K.R.; Dhassiah, M.P.; Gopal, D.; Kumar, A. Bio-Decolorization of Synthetic Dyes by a Halophilic Bacterium Salinivibrio sp. Front. Microbiol. 2020, 11, 594011. [Google Scholar] [CrossRef] [PubMed]
- Akter, K.; Zerin, T.; Banik, A. Biodegradation of textile dyes by bacteria isolated from textile industry effluents. Stamford J. Microbiol. 2020, 9, 5–8. [Google Scholar] [CrossRef]
- Shete, U.R.; Waghmare, V.M.; Dhande, N.M. Isolation and screening of textile dye decolorizing bacteria from textile industrial effluent. Themat. J. Microbiol. 2019, 3. [Google Scholar] [CrossRef]
- Khaled, J.M.; Alyahya, S.A.; Govindan, R.; Chelliah, C.K.; Maruthupandy, M.; Alharbi, N.S.; Kadaikunnan, S.; Issac, R.; Murugan, S.; Li, W.J. Laccase producing bacteria influenced the high decolorization of textile azo dyes with advanced study. Environ. Res. 2022, 207, 112211. [Google Scholar] [CrossRef] [PubMed]
- Thanavel, M.; Bankole, P.O.; Kadam, S.; Govindwar, S.P.; Sadasivam, S.K. Desulfonation of the textile azo dye Acid Fast Yellow MR by newly isolated Aeromonas hydrophila SK16. Water Resour. Ind. 2019, 22, 100116. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Lin, K.-W.; Wang, Y.-M.; Yen, C.-Y. Revealing interactive toxicity of aromatic amines to azo dye decolorizer Aeromonas hydrophila. J. Hazard. Mater. 2009, 166, 187–194. [Google Scholar] [CrossRef]
- Jadhav, U.U.; Dawkar, V.v.; Ghodake, G.S.; Govindwar, S.P. Biodegradation of Direct Red 5B, a textile dye by newly isolated Comamonas sp. UVS. J. Hazard. Mater. 2008, 158, 507–516. [Google Scholar] [CrossRef]
- Hossen, M.Z.; Hussain, M.E.; Hakim, A.; Islam, K.; Uddin, M.N.; Azad, A.K. Biodegradation of reactive textile dye Novacron Super Black G by free cells of newly isolated Alcaligenes faecalis AZ26 and Bacillus spp obtained from textile effluents. Heliyon 2019, 5, e02068. [Google Scholar] [CrossRef] [Green Version]
- Gomare, S.S.; Govindwar, S.P. Brevibacillus laterosporus MTCC 2298: A potential azo dye degrader. J. Appl. Microbiol. 2009, 106, 993–1004. [Google Scholar] [CrossRef]
- Fernando, E.; Keshavarz, T.; Kyazze, G. Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell. Int. Biodeterior. Biodegrad. 2012, 72, 1–9. [Google Scholar] [CrossRef]
- Angelova, B.; Avramova, T.; Stefanova, L.; Mutafov, S. Temperature effect on bacterial azo bond reduction kinetics: An Arrhenius plot analysis. Biodegradation 2008, 19, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.M.; Rane, N.R.; Bankole, P.O.; Krishnaiah, P.; Ahn, Y.; Park, Y.-K.; Yadav, K.K.; Amin, M.A.; Jeon, B.-H. An Assessment of Micro- and Nanoplastics in the Biosphere: A Review of Detection, Monitoring, and Remediation Technology. Chem. Eng. J. 2022, 430, 132913. [Google Scholar] [CrossRef]
- Karim, M.E.; Dhar, K.; Hossain, M.T. Decolorization of Textile Reactive Dyes by Bacterial Monoculture and Consortium Screened from Textile Dyeing Effluent. J. Genet. Eng. Biotechnol. 2018, 16, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Maurya, P.K.; Ali, S.A.; Alharbi, R.S.; Yadav, K.K.; Alfaisal, F.M.; Ahmad, A.; Ditthakit, P.; Prasad, S.; Jung, Y.-K.; Jeon, B.-H. Impacts of Land Use Change on Water Quality Index in the Upper Ganges River near Haridwar, Uttarakhand: A GIS-Based Analysis. Water 2021, 13, 3572. [Google Scholar] [CrossRef]
- Patil, P.S.; Phugare, S.S.; Jadhav, S.B.; Jadhav, J.P. Communal action of microbial cultures for Red HE3B degradation. J. Hazard. Mater. 2010, 181, 263–270. [Google Scholar] [CrossRef]
- Patil, N.P.; Bholay, A.D.; Kapadnis, B.P.; Gaikwad, V.B. Biodegradation of model azo dye methyl red and other textile dyes by isolate Bacillus circulans npp1. J. Pure Appl. Microbiol. 2016, 10, 2793–2800. [Google Scholar] [CrossRef]
- Kalme, S.; Jadhav, S.; Jadhav, M.; Govindwar, S. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzyme Microb. Technol. 2009, 44, 65–71. [Google Scholar] [CrossRef]
- Ghodake, G.; Jadhav, U.; Tamboli, D.; Kagalkar, A.; Govindwar, S. Decolorization of Textile Dyes and Degradation of Mono-Azo Dye Amaranth by Acinetobacter calcoaceticus NCIM 2890. Indian J. Microbiol. 2011, 51, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.J.; Ahn, Y.; Kurade, M.B.; Patil, S.M.; Ha, G.S.; Bankole, P.O.; Khan, M.A.; Chang, S.W.; Abdellattif, M.H.; Yadav, K.K.; et al. The comprehensive effects of aluminum oxide nanoparticles on the physiology of freshwater microalga Scenedesmus obliquus and it’s phycoremediation performance for the removal of sulfacetamide. Environ. Res. 2022, 215, 114314. [Google Scholar] [CrossRef]
- Buthelezi, S.P.; Olaniran, A.O.; Pillay, B. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules 2012, 17, 14260–14274. [Google Scholar] [CrossRef] [PubMed]
- Aloius Togo, C.; Clifford Zvandada Mutambanengwe, C.; George Whiteley, C. Decolourisation and degradation of textile dyes using a sulphate reducing bacteria (SRB)-biodigester microflora co-culture. Afr. J. Biotechnol. 2008, 7, 114–121. [Google Scholar]
- Al-Tohamy, R.; Sun, J.; Fareed, M.F.; Kenawy, E.R.; Ali, S.S. Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci. Rep. 2020, 10, 12370. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Yadav, V.K.; Yadav, K.K.; Almohana, A.I.; Almojil, S.F.; Gnanamoorthy, G.; Kim, D.-H.; Islam, S.; Kumar, P.; Jeon, B.-H. Application of Green Synthesized MMT/Ag Nanocomposite for Removal of Methylene Blue from Aqueous Solution. Water 2021, 13, 3206. [Google Scholar] [CrossRef]
- Haq, I.; Raj, A.; Markandeya. Biodegradation of Azure-B dye by Serratia liquefaciens and its validation by phytotoxicity, genotoxicity and cytotoxicity studies. Chemosphere 2018, 196, 58–68. [Google Scholar] [CrossRef]
- Sheela, T.; Sadasivam, S.K. Dye degradation potential and its degradative enzymes synthesis of bacillus cereus skb12 isolated from a textile industrial effluent. J. Appl. Biol. Biotechnol. 2020, 8, 42–46. [Google Scholar] [CrossRef]
- Liu, W.; Liu, C.; Liu, L.; You, Y.; Jiang, J.; Zhou, Z.; Dong, Z. Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt-tolerant strain Bacillus circulans BWL1061. Ecotoxicol. Environ. Saf. 2017, 141, 9–16. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Kumar, A. Enhanced degradation of anthraquinone dyes by microbial monoculture and developed consortium through the production of specific enzymes. Sci. Rep. 2021, 11, 7678. [Google Scholar] [CrossRef]
- Schmidt, C.; Berghahn, E.; Ilha, V.; Granada, C.E. Biodegradation potential of Citrobacter cultures for the removal of amaranth and congo red azo dyes. Int. J. Environ. Sci. Technol. 2019, 16, 6863–6872. [Google Scholar] [CrossRef]
- Sarim, K.M.; Kukreja, K.; Shah, I.; Choudhary, C.K. Biosorption of direct textile dye Congo red by Bacillus subtilis HAU-KK01. Bioremediat. J. 2019, 23, 185–195. [Google Scholar] [CrossRef]
- Garg, N.; Garg, A.; Mukherji, S. Eco-friendly decolorization and degradation of reactive yellow 145 textile dye by Pseudomonas aeruginosa and Thiosphaera pantotropha. J. Environ. Manag. 2020, 263, 110383. [Google Scholar] [CrossRef] [PubMed]
- Velayutham, K.; Madhava, A.K.; Pushparaj, M.; Thanarasu, A.; Devaraj, T.; Periyasamy, K.; Subramanian, S. Biodegradation of Remazol Brilliant Blue R using isolated bacterial culture (Staphylococcus sp. K2204). Environ. Technol. 2018, 39, 2900–2907. [Google Scholar] [CrossRef] [PubMed]
- Holkar, C.R.; Arora, H.; Halder, D.; Pinjari, D.V. Biodegradation of reactive blue 19 with simultaneous electricity generation by the newly isolated electrogenic Klebsiella sp. C NCIM 5546 bacterium in a microbial fuel cell. Int. Biodeterior. Biodegrad. 2018, 133, 194–201. [Google Scholar] [CrossRef]
- Hansda, A.; Kumar, V.; Anshumali. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J. Microbiol. Biotechnol. 2016, 32, 170. [Google Scholar] [CrossRef]
- Singh, G.; Dwivedi, S.K.; Mishra, J. Role of Fungal Enzymes in the Removal of Azo Dyes. In Microbial Enzymes: Roles and Applications in Industries; Arora, N.K., Mishra, J., Mishra, V., Eds.; Springer: Singapore, 2020; pp. 231–257. [Google Scholar] [CrossRef]
- Moiseenko, K.V.; Vasina, D.V.; Farukshina, K.T.; Savinova, O.S.; Glazunova, O.A.; Fedorova, T.V.; Tyazhelova, T.V. Orchestration of the expression of the laccase multigene family in white-rot basidiomycete Trametes hirsuta 072: Evidences of transcription level subfunctionalization. Fungal Biol. 2018, 122, 353–362. [Google Scholar] [CrossRef]
- Kiran, S.; Huma, T.; Jalal, F.; Farooq, T.; Hameed, A.; Gulzar, T.; Bashir, A.; Rahmat, M.; Rahmat, R.; Rafique, M.A. Lignin degrading system of Phanerochaete chrysosporium and its exploitation for degradation of synthetic dyes wastewater. Pol. J. Environ. Stud. 2019, 28, 1749–1757. [Google Scholar] [CrossRef]
- Valliyaparambil, P.T.; Kaliyaperumal, K.A.; Gopakumaran, N. Pleurotus ostreatus laccase decolorization of remazol brilliant violet 5R dye: Statistical optimization and toxicity studies on microbes and its kinetics. J. Appl. Biotechnol. Rep. 2019, 6, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, G.; Cennamo, G.; Sannia, G. Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb. Technol. 2005, 36, 17–24. [Google Scholar] [CrossRef]
- Kim, S.J.; Shoda, M. Decolorization of molasses and a dye by a newly isolated strain of the fungus Geotrichum candidum Dec 1. Biotechnol. Bioeng. 1999, 62, 114–119. [Google Scholar] [CrossRef]
- Lan, J.; Huang, X.; Hu, M.; Li, Y.; Qu, Y.; Gao, P.; Wu, D. High efficient degradation of dyes with lignin peroxidase coupled with glucose oxidase. J. Biotechnol. 2006, 123, 483–490. [Google Scholar] [CrossRef]
- Svobodová, K.; Erbanová, P.; Sklenář, J.; Novotný, Č. The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures ofIrpex lacteus. Folia Microbiol. 2006, 51, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Cuamatzi-Flores, J.; Esquivel-Naranjo, E.; Nava-Galicia, S.; López-Munguía, A.; Arroyo-Becerra, A.; Villalobos-López, M.A.; Bibbins-Martínez, M. Differential regulation of Pleurotus ostreatus dye peroxidases gene expression in response to dyes and potential application of recombinant Pleos-DyP1 in decolorization. PLoS ONE 2019, 14, e0209711. [Google Scholar] [CrossRef] [Green Version]
- Lueangjaroenkit, P.; Teerapatsakul, C.; Sakka, K.; Sakka, M.; Kimura, T.; Kunitake, E.; Chitradon, L. Two Manganese Peroxidases and a Laccase of Trametes polyzona KU-RNW027 with Novel Properties for Dye and Pharmaceutical Product Degradation in Redox Mediator-Free System. Mycobiology 2019, 47, 217–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, P.; Madamwar, D. Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl. Biochem. Biotechnol. 2002, 102, 109–118. [Google Scholar] [CrossRef]
- Juárez-Hernández, J.; Castillo-Hernández, D.; Pérez-Parada, C.; Nava-Galicia, S.; Cuervo-Parra, J.A.; Surian-Cruz, E.; Díaz-Godínez, G.; Sánchez, C.; Bibbins-Martínez, M. Isolation of fungi from a textile industry effluent and the screening of their potential to degrade industrial dyes. J. Fungi 2021, 7, 805. [Google Scholar] [CrossRef]
- Song, Z.; Song, L.; Shao, Y.; Tan, L. Degradation and detoxification of azo dyes by a salt-tolerant yeast Cyberlindnera samutprakarnensis S4 under high-salt conditions. World J. Microbiol. Biotechnol. 2018, 34, 131. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, L.; Dilbaghi, N. Biodegradation of Orange II Dye by Phanerochaete chrysosporium in Simulated Wastewater; CSIR: New Delhi, India, 2009; Volume 68. [Google Scholar]
- Harazono, K.; Watanabe, Y.; Nakamura, K. Decolorization of azo dye by the white-rot basidiomycete Phanerochaete sordida and by its manganese peroxidase. J. Biosci. Bioeng. 2003, 95, 455–459. [Google Scholar] [CrossRef]
- Yao, J.; Yao, J.; Jia, R.; Zheng, L.; Wang, B. Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol. Bioprocess Eng. 2013, 18, 868–877. [Google Scholar] [CrossRef]
- Lanfranconi, I.; Ceretta, M.B.; Bertola, N.; Wolski, E.A.; Durruty, I. Textile dyeing wastewater treatment by Penicillium chrysogenum: Design of a sustainable process. Water Sci. Technol. 2022, 86, 292–301. [Google Scholar] [CrossRef]
- Argumedo-Delira, R.; Gómez-Martínez, M.J.; Uribe-Kaffure, R. Trichoderma biomass as an alternative for removal of congo red and malachite green industrial dyes. Appl. Sci. 2021, 11, 448. [Google Scholar] [CrossRef]
- He, X.L.; Song, C.; Li, Y.Y.; Wang, N.; Xu, L.; Han, X.; Wei, D.S. Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicol. Environ. Saf. 2018, 150, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Rahim, W.M.; El-Meleigy, M.A.; Ibrahim, E. Bioremoval of Textile Effluent Dye by Aspergillus fumigates. Int. J. Water Resour. Arid. Environ. 2018, 7, 70–78. [Google Scholar]
- Sudiana, I.K.; Citrawathi, D.M.; Sastrawidana, I.D.K.; Maryam, S.; Sukarta, I.N.; Wirawan, G.A. Biodegradation of Turquoise Blue Textile Dye by Wood Degrading Local Fungi Isolated from Plantation Area. J. Ecol. Eng. 2022, 23, 205–214. [Google Scholar] [CrossRef]
- Rani, B.; Kumar, V.; Singh, J.; Bisht, S.; Teotia, P.; Sharma, S.; Kela, R. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz. J. Microbiol. 2014, 45, 1055–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, E.J.R.; Corso, C.R. Decolorization and removal of toxicity of textile azo dyes using fungal biomass pelletized. Int. J. Environ. Sci. Technol. 2019, 16, 1319–1328. [Google Scholar] [CrossRef] [Green Version]
- Bergsten-Torralba, L.R.; Nishikawa, M.M.; Baptista, D.F.; Magalhães, D.D.P.; Silva, M.D. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment. Braz. J. Microbiol. 2009, 40, 808–817. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.H.; Cheow, Y.L.; Ng, S.L.; Ting, A.S.Y. Biodegradation of Triphenylmethane Dyes by Non-white Rot Fungus Penicillium simplicissimum: Enzymatic and Toxicity Studies. Int. J. Environ. Res. 2019, 13, 273–282. [Google Scholar] [CrossRef]
- Bankole, P.O.; Adekunle, A.A.; Govindwar, S.P. Biodegradation of a monochlorotriazine dye, cibacron brilliant red 3B-A in solid state fermentation by wood-rot fungal consortium, Daldinia concentrica and Xylaria polymorpha: Co-biomass decolorization of cibacron brilliant red 3B-A dye. Int. J. Biol. Macromol. 2018, 120, 19–27. [Google Scholar] [CrossRef]
- Mathur, M.; Vijayalakshmi, K.S.; Gola, D.; Singh, K.; Chaudhary, S.; Kaushik, P.; Malik, A. Decolourization of Textile Dyes by Aspergillus lentulus. J. Basic Appl. Eng. Res. 2015, 2, 1469–1473. [Google Scholar]
- Sumathi, S.; Manju, B.S. Uptake of reactive textile dyes by Aspergillus foetidus. Enzyme Microb. Technol. 2000, 27, 347–355. [Google Scholar] [CrossRef]
- Corso, C.R.; Maganha De Almeida, A.C. Bioremediation of dyes in textile effluents by Aspergillus oryzae. Microb. Ecol. 2009, 57, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Kalantari, M. Bioremoval of an azo textile dye, Reactive Red 198, by Aspergillus flavus. World J. Microbiol. Biotechnol. 2012, 28, 1125–1131. [Google Scholar] [CrossRef]
- De Castro, K.C.; Leme, V.F.C.; Souza, F.H.M.; Costa, G.O.B.; Santos, G.E.; Litordi, L.R.V.; Andrade, G.S.S. Performance of inactivated Aspergillus oryzae cells on dye removal in aqueous solutions. Environ. Technol. Innov. 2021, 24, 101828. [Google Scholar] [CrossRef]
- Singh, L. Microbial decolourization of textile dyes by the fungus Trichoderma harzianum Characterization of Dye Degrading Fungi and Metabolites produced by some Endophytic Fungi View project. J. Pure Appl. Microbiol. 2012, 6, 1829–1833. [Google Scholar]
- Mahmoud, M.S. Decolorization of certain reactive dye from aqueous solution using Baker’s Yeast (Saccharomyces cerevisiae) strain. HBRC J. 2016, 12, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Azin, E.; Moghimi, H. Efficient mycosorption of anionic azo dyes by Mucor circinelloides: Surface functional groups and removal mechanism study. J. Environ. Chem. Eng. 2018, 6, 4114–4123. [Google Scholar] [CrossRef]
- Jamee, R.; Siddique, R. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. Eur. J. Microbiol. Immunol. 2019, 9, 114–118. [Google Scholar] [CrossRef]
- Gangola, S.; Bhatt, P.; Chaudhary, P.; Khati, P.; Kumar, N.; Sharma, A. Bioremediation of Industrial Waste Using Microbial Metabolic Diversity. In Microbial Biotechnology in Environmental Monitoring and Cleanup; IGI Global: Hershey, PA, USA, 2018; pp. 1–27. [Google Scholar] [CrossRef]
- Chin, J.Y.; Chng, L.M.; Leong, S.S.; Yeap, S.P.; Yasin, N.H.M.; Toh, P.Y. Removal of Synthetic Dye by Chlorella vulgaris Microalgae as Natural Adsorbent. Arab. J. Sci. Eng. 2020, 45, 7385–7395. [Google Scholar] [CrossRef]
- El-Kassas, H.Y.; Mohamed, L.A. Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J. Aquat. Res. 2014, 40, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-L.; Chu, W.-L.; Phang, S.-M. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour. Technol. 2010, 101, 7314–7322. [Google Scholar] [CrossRef]
- Chu, W.-L.; See, Y.-C.; Phang, S.-M. Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J. Appl. Phycol. 2008, 21, 641. [Google Scholar] [CrossRef]
- Boulkhessaim, S.; Gacem, A.; Khan, S.H.; Amari, A.; Yadav, V.K.; Harharah, H.N.; Elkhaleefa, A.M.; Yadav, K.K.; Rather, S.-u.; Ahn, H.-J.; et al. Emerging Trends in the Remediation of Persistent Organic Pollutants Using Nanomaterials and Related Processes: A Review. Nanomaterials 2022, 12, 2148. [Google Scholar] [CrossRef] [PubMed]
- Ishchi, T.; Sibi, G. Azo Dye Degradation by Chlorella vulgaris: Optimization and Kinetics. Int. J. Biol. Chem. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Dellamatrice, P.M.; Silva-Stenico, M.E.; de Moraes, L.A.B.; Fiore, M.F.; Monteiro, R.T.R. Degradation of textile dyes by cyanobacteria. Braz. J. Microbiol. 2017, 48, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahalakshmi, S.; Lakshmi, D.; Menaga, U. Biodegradation of Different Concentration of dye (Congo red dye) by using Green and Blue Green Algae. Int. J. Environ. Res. 2015, 9, 735–744. [Google Scholar]
- Shah, V.; Garg, N.; Madamwar, D. An integrated process of textile dye removal and hydrogen evolution using cyanobacterium, Phormidium valderianum. World J. Microbiol. Biotechnol. 2001, 17, 499–504. [Google Scholar] [CrossRef]
- Pathak, V.V.; Kothari, R.; Chopra, A.K.; Singh, D.P. Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J. Environ. Manag. 2015, 163, 270–277. [Google Scholar] [CrossRef]
- Parikh, A.; Madamwar, D. Textile dye decolorization using cyanobacteria. Biotechnol. Lett. 2005, 27, 323–326. [Google Scholar] [CrossRef]
- Kalasariya, H.S.; Patel, N.B.; Gacem, A.; Alsufyani, T.; Reece, L.M.; Yadav, V.K.; Awwad, N.S.; Ibrahium, H.A.; Ahn, Y.; Yadav, K.K.; et al. Marine Alga Ulva fasciata-Derived Molecules for the Potential Treatment of SARS-CoV-2: An In Silico Approach. Mar. Drugs 2022, 20, 586. [Google Scholar] [CrossRef]
- Ghazal, F.M.; Mahdy, E.S.M.; El-Fattah, M.S.A.; EL-Sadany, A.E.G.Y.; Elg, Y.; Doha, N.M.E. The Use of Microalgae in Bioremediation of the Textile Wastewater Effluent. Nat. Sci. 2018, 16, 98–104. [Google Scholar] [CrossRef]
- Maruthanayagam, A.; Mani, P.; Kaliappan, K.; Chinnappan, S. In vitro and In silico Studies on the Removal of Methyl Orange from Aqueous Solution Using Oedogonium subplagiostomum AP1. Water Air Soil Pollut. 2020, 231, 232. [Google Scholar] [CrossRef]
- Bijekar, S.; Padariya, H.D.; Yadav, V.K.; Gacem, A.; Hasan, M.A.; Awwad, N.S.; Yadav, K.K.; Islam, S.; Park, S.; Jeon, B.-H. The State of the Art and Emerging Trends in the Wastewater Treatment in Developing Nations. Water 2022, 14, 2537. [Google Scholar] [CrossRef]
- Gacem, A.; Modi, S.; Yadav, V.K.; Islam, S.; Patel, A.; Dawane, V.; Jameel, M.; Inwati, G.K.; Piplode, S.; Solanki, V.S.; et al. Recent Advances in Methods for Synthesis of Carbon Nanotubes and Carbon Nanocomposite and their Emerging Applications: A Descriptive Review. J. Nanomater. 2022, 2022, 7238602. [Google Scholar] [CrossRef]
- Sherifah, M.W.; Seun, A.E.; Kehinde, O.S.; Abiodun, A.O. Decolourization of synthetic dyes by laccase enzyme produced by Kluyveromyces dobzhanskii DW1 and Pichia manshurica DW2. Afr. J. Biotechnol. 2019, 18, 1–11. [Google Scholar] [CrossRef]
- Darvishi, F.; Moradi, M.; Jolivalt, C.; Madzak, C. Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes. Ecotoxicol. Environ. Saf. 2018, 165, 278–283. [Google Scholar] [CrossRef]
- Othman, A.M.; Elsayed, M.A.; Elshafei, A.M.; Hassan, M.M. Purification and biochemical characterization of two isolated laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization. Int. J. Biol. Macromol. 2018, 113, 1142–1148. [Google Scholar] [CrossRef]
- Dai, S.; Yao, Q.; Yu, G.; Liu, S.; Yun, J.; Xiao, X.; Deng, Z.; Li, H. Biochemical Characterization of a Novel Bacterial Laccase and Improvement of Its Efficiency by Directed Evolution on Dye Degradation. Front. Microbiol. 2021, 12, 633004. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Geng, A. Expression of a novel manganese peroxidase from Cerrena unicolor BBP6 in Pichia pastoris and its application in dye decolorization and PAH degradation. Biochem. Eng. J. 2020, 153, 107402. [Google Scholar] [CrossRef]
- Bouacem, K.; Rekik, H.; Jaouadi, N.Z.; Zenati, B.; Kourdali, S.; El Hattab, M.; Badis, A.; Annane, R.; Bejar, S.; Hacene, H.; et al. Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9. Int. J. Biol. Macromol. 2018, 106, 636–646. [Google Scholar] [CrossRef]
- Shaheen, R.; Asgher, M.; Hussain, F.; Bhatti, H.N. Immobilized lignin peroxidase from Ganoderma lucidum IBL-05 with improved dye decolorization and cytotoxicity reduction properties. Int. J. Biol. Macromol. 2017, 103, 57–64. [Google Scholar] [CrossRef]
- Campos, R.; Kandelbauer, A.; Robra, K.H.; Cavaco-Paulo, A.; Gübitz, G.M. Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J. Biotechnol. 2001, 89, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, L.; Feng, F. Improving the indigo carmine decolorization ability of a bacillus amyloliquefaciens laccase by site-directed mutagenesis. Catalysts 2017, 7, 275. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.Q.; Cui, P.; Ru, S.; Kurade, M.B.; Patil, S.M.; Yadav, K.K.; Fallatah, A.M.; Cabral-Pinto, M.M.S.; Jeon, B.H. A comprehensive review on the effects of engineered nanoparticles on microalgal treatment of pollutants from wastewater. J. Clean. Prod. 2022, 344, 131121. [Google Scholar] [CrossRef]
Actinomycetes | Dyes Used | Efficiency | References |
---|---|---|---|
Streptomyces sp. S27 | MR | 99% | [36] |
Streptomyces bacillaris | Triphenylmethane dyes: MG, MV, CV, and CB | MG (94.7%), MV (91.8%), CV (86.6%), CB (68.4%) | [37] |
Streptomyces ipomoeae CECT 3341 | AO63 | 6–70% | [38] |
Streptomyces sviceus (marine) | CR-21 | [39] | |
Streptomyces sps | RR 147 (azo) RR 171 RB 114 RB 209 RB 116 | 3–100% | [40] |
Streptomyces sps | MG, MV, CV CB | (MG 95%, MV 92%, CV 87%, CB 68%). | [41] |
Bacteria | Dyes Used | Efficiency | References |
---|---|---|---|
Aeromonas hydrophila A. Hydrophila SK16 | RR141 MG Acid fast yellow MR | 70–80% 96.8% 91.25% | [18,46,47] |
Comamonas sps UVS | DB GL, DB5B | [48] | |
Bacillus sp. and Staph. aureus | BY HP-2R, BS-RS, and B. blue RS 01 (BB) | 71–83% | [43] |
Alcaligenes faecalis AZ26, Bacillus cereus AZ27 and Bacillus sp. | NSB-G | 90% | [49] |
Brevibacillus laterosporus | DB-MR, MO, Blue-2B, Golden yellow (GY) Brilliant blue | 100% | [50] |
Shewanella oneidensis (MFC) | Acid orange (AO 7) | 80.4 | [51] |
Alcaligenes faecalis and Rhodococcus erythropolis | Monoazo dye Acid orange | 80–95 | [52] |
Consortium of Ps. aeruginosa, B. pumilis, B. thuringiensis, Enterococcus faecium in different combinations | NR, N Black, N Blue dk, N Navy, N Yellow | 82–97% | [53] |
Neisseria sp., Vibrio sp., Bacillus sp., Bacillus sp. and Aeromonas sps | N Orange FN-R, N Brilliant Blue FN-R, N Super Black G, BY S8-G, and BR S2-B | 60–90% | [54] |
Acinetobacter (ST16.16/164 and Klebsiella (ST16.16/034) | Monoazo dye RO 16 and diazo dye RG-19 | More than 80% | [55] |
Salinivibrio kushneri HTSP | CBB G-250 and CR and safranin | More than 80% | [42] |
Pseudomonas sp. (S3, S11 and S12), Klebisiella sp. (S4). and Aeromonas sp. (S2) | JR, JB and JGY | 45–50% | [44] |
Bacillus odyssey SUK3, Morganella morganii SUK5 and Proteus sps SUK 7 | Red HE3B, Reactive Blue 59 | 97–99% | [56] |
B. circulans NPP1 | MR and other dyes | 98% | [57] |
Ps. desmolyticum NCIM 2112 | DB 6, Red HEB7, and Green HE4B | 70, 90% | [58] |
Acinetobacter calcoaceticus | MR, MO | 90–98% | [59] |
Enterobacter sp. CV–S1 | CV | [60] | |
B. subtilis (E1), Exiguobacterium acetylicum (D1), Klebsiella terrigena (R2), S. aureus (A22), Ps. pseudoalcaligenes (A17), and Ps. plecoglossicida (A14) | Whale, mediblue, fawn and mixed dye, | 97.04%, 80.61%, 94.93% and 81.64% | [61] |
Sulfate-reducing bacteria (SRB) | Orange II | 95% | [62] |
Sterigmatomyces halophilus SSA1 575 | RB-5, RB-5 | 100% | [63] |
Anoxybacillus ayderensis SK3-4 | DG 6 | 100% | [64] |
A. hydrophila SK 16 | AFY MR | More than 70 | [46] |
Serratia liquifaciens | Azure B | 90% | [65] |
Bacillus cereus SKB12 | RB-5 | 88.7% | [66] |
B. cereus and Ps. parafulva | Azo dyes: T-blue, yellow GR, and orange 3R | 91.69 and 89.21% | [45] |
B. circulans BWLI 061 | MO | 99.22% | [67] |
Bacterial consortium-Bacillus flexus TS8 (BF), Proteus mirabilis PMS (PM), and Ps. aeruginosa NCH (PA) | Indanthrene Blue RS | 99% | [68] |
Bacillus pseudomycoides | MG | 96.8% | [19] |
Citrobacter sp. | CR | 93% | [69] |
Bacillus subtilis HAU-KK01 | CR | 92.8% | [70] |
Thiosphaera pantotropha | RY | 100% | [71] |
Staphylococcus sp. K2204 | RBB | 100% | [72] |
Staphylococcus sp. | Reactive blue | 97% | [73] |
Fungi | Dyes Used | Efficiency | References |
---|---|---|---|
P. chrysosporium | Rhodamine-B | 91% | [81] |
P. chrysosporium | Bromophenol blue | 99.3% | [82] |
Pleurotus ostreatus | Acid Blue 129 | 77% | [83] |
Trametes polyzona KU-RNW027 | RB-B | 100% | [84] |
P. chrysosporium | Ranocid Fast Blue | 83% | [85] |
Emmia latemarginata (MAP03, MAP04, and MAP05) and Mucor circinelloides (MAP01, MAP02, and MAP06) | Azo, indigo, and anthraquinone dyes (Acetyl yellow G) | [86] | |
Cyberlindnera samutprakarnensis S4 | Acid Red | 97% | [87] |
P. chrysosporium | Orange-II | 85% | [88] |
Phanerochaete sordida | RR-120 | 90.6 | [89] |
Schizophyllum sp. F17 | Orange IV | 76% | [90] |
Penicillium chrysogenum | DB22 | [91] | |
Trichoderma (T. virens, T. viride) | CR and MG | 81–99% | [92] |
Trichoderma tomentosum | AR-3R | 99.2% | [93] |
A. fumigatus | Direct Violet dye | 51.38–93.74% | [94] |
Trametes hirsuta, Microporus xanthopus, and Ganoderma applanatum | turquoise blue textile dye | 82.17% 78.50 and 85.84% | [95] |
Aspergillus niger, and Phanerochaete chrysosporium, | BF (81.85%), Nigrosin (77.47%), MG (72.77%) | P. chrysosporium maxium with Nigrosin (90.15%) > BF (89.8%), MG (83.25%) | [96] |
Aspergillus niger, Asp. terreus and Rhizopus oligosporus. | Acid Blue 161 e Procion Red MX-5B | 58–68% | [97] |
Penicillium simplicissimum INCQS 40211 | (RR198), R B214 (RB214), RB21, and a mixture of all three | [98] | |
P. simplicissimum (n-WRF) | Triphenylmethane Dyes: CV, MV, MG, CB | 96.1–98.7% | [99] |
Diutina rugosa | Indigo | 100% | [100] |
Asp. lentulus | VAT Novatic Grey (100%), RR-Red (98.47%), RY (91.55%), and Indanthrane Blue (99.28%) Reactive S | 91–100% 55.33% | [101] |
Aspergillus foetidus | Azo reactive dyes, Drimarene dyes | >95% | [102] |
Aspergillus oryzae | Reactive dyes PR-HE7B and PV-H3R | [103] | |
Aspergillus sp., | Fast Red A | 99.5% | |
Aspergillus flavus | Azo textile dye, RR198 | 84.96% | [104] |
Aspergillusoryzaedead cells | RB, MB, and MO | 100% | [105] |
Trichoderma harzianum | AR and anthraquinone (Basic blue) | 70% and 51% | [106] |
Saccharomyces cerevisiae | Ramazole Blue | 100% | [107] |
Mucor circinelloides | Ramazole Blue | 95% | [108] |
Algae | Dyes Used | Efficiency | References |
---|---|---|---|
Chlorella vulgaris | MB and AO7 | 83.04 ± 2.94% | [111] |
C. vulgaris | Azo dye: Metanil yellow, FO, FR, DB, AF Red, Direct Fast Scarlet, CR, and Acid-Fast N Blue | Up to (75.68%) | [112] |
C. vulgaris UMACC 001 | Supranol Red 3BW (SR 3BW) | 41.8% to 50.0%. | [113] |
C. vulgaris (Immobilised) | SB 3BW, Lanaset Red 2GA and Levafix Navy Blue EBNA | 44.0–49% | [114] |
Chlorella vulgaris | Blue dye Green dye Reactive black | Blue: 63.89% (1 mg/L) Green: 45.71% (1 mg/L) 80% | [115,116] |
Sphaerocystis schroeteri | Blue dye Green dye | Blue: 63.87% (1 mg/L) Green: 60.00% (1 mg/L) | [115] |
Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 | Indigo, RBBR and Sulphur Black) | 80–90% | [117] |
Haematococcus sp., Chlorella sp., Chlorella vulgaris, Scenedesmus obliquuss, S. officinalis, and S. quadricauda Arthospira maxima (Blue green algae) | Up to 98% | [118] | |
Phormidium valderianum, a marine cyanobacterium | AR, AR-119 and DB-155, (at Ph > 11) | >90% | [119] |
Chlorella pyrenoidosa | MB Rhodamine B | 84% | [120] |
Gloeocapsa pleurocapsoides and Phormidium ceylanicum | AR 97 and FF Sky Blue dyes | 80% after 26 days | [121] |
Achaetomium strumarium | Acid red | 99.5% | [122] |
Anabaena flos aquae, Nostoc elepsosporum, Nostoc linkia, Anabaena variabilis and Chlorella vulgaris | Azo dyes | N. elepsosporum (100%), C. vulgaris (96.16%), A. variabilis (88.71%), N. linkia (88.71) and A. flos aquae (50.81). | [123] |
Arthrospira platensis NIOF17/003 | Methylene Blue | 93% | [23] |
A. platensis complete drybiomss and Lipid-Free Biomass | Ismate violet 2R, IV2R | 75.7% and 61.11% | [25] |
A. platensis complete drybiomss and Lipid-Free Biomass | Ammonium ions (NH4+) | In synthetic aquaculture: ACDW (64.24%) LFB (89.68%) In real aquaculture: ACDW (25.7%) LFB (37.8%) | [24] |
Oedogonium subplagiostomum | MO | 97% | [124] |
Cyanobacterium phormidium | Indigo | 91% | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, H.; Yadav, V.K.; Yadav, K.K.; Choudhary, N.; Kalasariya, H.; Alam, M.M.; Gacem, A.; Amanullah, M.; Ibrahium, H.A.; Park, J.-W.; et al. A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries. Water 2022, 14, 3163. https://doi.org/10.3390/w14193163
Patel H, Yadav VK, Yadav KK, Choudhary N, Kalasariya H, Alam MM, Gacem A, Amanullah M, Ibrahium HA, Park J-W, et al. A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries. Water. 2022; 14(19):3163. https://doi.org/10.3390/w14193163
Chicago/Turabian StylePatel, Heli, Virendra Kumar Yadav, Krishna Kumar Yadav, Nisha Choudhary, Haresh Kalasariya, M. Mujahid Alam, Amel Gacem, Mohammed Amanullah, Hala A. Ibrahium, Jae-Woo Park, and et al. 2022. "A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries" Water 14, no. 19: 3163. https://doi.org/10.3390/w14193163
APA StylePatel, H., Yadav, V. K., Yadav, K. K., Choudhary, N., Kalasariya, H., Alam, M. M., Gacem, A., Amanullah, M., Ibrahium, H. A., Park, J. -W., Park, S., & Jeon, B. -H. (2022). A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries. Water, 14(19), 3163. https://doi.org/10.3390/w14193163