Distributions and Influencing Factors of Carbonate Species in Bohai Bay and Relevant Rivers Flowing into the Bay in Summer 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Determination Methods
2.3. Estimation of CO2 Air–Sea Fluxes in Bohai Bay in Summer
3. Results
3.1. Distribution of Relevant Biochemical Parameters in Surface and Bottom Seawater in Bohai Bay
3.2. Horizontal Distributions of Carbonate Species in Surface and Bottom Seawater in Bohai Bay
3.2.1. pH Distribution
3.2.2. Alk Distribution
3.2.3. DIC Distributions
3.2.4. pCO2 Distribution
3.2.5. CO2 Air–Sea Flux Distribution
3.3. Distributions of Carbonate Species in the Relevant Rivers Flowing into Bohai Bay
3.4. Vertical Distributions of Carbonate Species in Bohai Bay
3.4.1. Vertical Distributions of Carbonate Species in Transect A
3.4.2. Vertical Distributions of Carbonate Species in Transect B
4. Discussion
4.1. Comparison with Other Estuaries/Bays
4.2. Influences of Relevant Hydrological and Biochemical Parameters on the Carbonate Species of Bohai Bay
4.3. The Influence of River Inputs on Carbonate Species of Bohai Bay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, J.E.; Cai, W.J.; Raymond, P.A.; Bianchi, T.S.; Hopkinson, C.S.; Regnier, P.A. The changing carbon cycle of the coastal ocean. Nature 2013, 504, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Kleypas, J.A.; Buddemeier, R.W.; Archer, D.; Gattuso, J.P.; Langdon, C.; Opdyke, B.N. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 1999, 284, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Hu, X.; Huang, W.; Murrell, M.C.; Lehrter, J.C.; Lohrenz, S.E.; Gong, G.C. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 2011, 4, 766–770. [Google Scholar] [CrossRef]
- Salisbury, J.; Green, M.; Hunt, C.; Campbell, J. Coastal acidification by rivers: A threat to shellfish? Eos. Trans. Am. Geophys. Union 2008, 89, 513. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.T.A.; Borges, A.V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.; Kim, D.; Kang, Y.C.; Lee, J.H.; Jang, S.T.; Kim, C.H. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Cont. Shelf Res. 2007, 27, 2623–2636. [Google Scholar] [CrossRef]
- Du, R.; Liu, G.; Yang, S.; Zhou, Y.; Zhang, B. Modern sedimentation and sedimentation process in Bohai Bay. Mar. Geol. Quat. Geol. 1990, 10, 15–22. [Google Scholar]
- Jia, H.; Shen, Y.; Su, M.; Yu, C. Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay. Front. Earth Sci. 2018, 12, 625–639. [Google Scholar] [CrossRef]
- Zhou, R.; Qin, X.; Peng, S.; Shi, H.; Deng, S. Macroinvertebrate investigation and their relation to environmental factors in Bohai Bay. Acta Ecol. Sin. 2014, 34, 50–58. [Google Scholar]
- Peng, S. The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: Temporal–spatial variations, sources, pollution statuses, and ecological risks. Mar. Pollut. Bull. 2015, 95, 445–451. [Google Scholar] [CrossRef]
- Peng, S.; Qin, X.; Shi, H.; Zhou, R.; Dai, M.; Ding, D. Distribution and controlling factors of phytoplankton assemblages in a semi-enclosed bay during spring and summer. Mar. Pollut. Bull. 2012, 64, 941–948. [Google Scholar] [CrossRef]
- Liu, X.; Liu, D.; Wang, Y.; Shi, Y.; Wang, Y.; Sun, X. Temporal and spatial variations and impact factors of nutrients in Bohai Bay, China. Mar. Pollut. Bull. 2019, 140, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhang, Q. Seasonal variations in macrobenthic taxonomic diversity and the application of taxonomic distinctness indices in Bohai Bay, northern China. Ecol. Indic. 2016, 71, 181–190. [Google Scholar] [CrossRef]
- Xie, L.; Xu, H.; Xin, M.; Wang, B.; Tu, J.; Wei, Q.; Sun, X. Regime shifts in trophic status and regional nutrient criteria for the Bohai Bay, China. Mar. Pollut. Bull. 2021, 170, 112674. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zuo, S.; Xie, H.; Li, H.; Yang, Z. Analysis of impact effects and changes of the coastline in the Bohai Bay during the past 40 years. J. East China Norm. Univ. 2017, 4, 139–148. [Google Scholar]
- Lu, Y.; Ji, R.; Zuo, L. Morphodynamic responses to the deep water harbor development in the Caofeidian sea area, China’s Bohai Bay. Coast. Eng. 2009, 56, 831–843. [Google Scholar] [CrossRef]
- Yao, H.; Hu, X. Responses of carbonate system and CO2 flux to extended drought and intense flooding in a semiarid subtropical estuary. Limnol. Oceanogr. 2017, 62, S112–S130. [Google Scholar] [CrossRef] [Green Version]
- Monaco, C.L.; Metzl, N.; Fin, J.; Mignon, C.; Cuet, P.; Douville, É.; Tribollet, A. Distribution and long-term change of the sea surface carbonate system in the Mozambique Channel (1963–2019). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2021, 186, 104936. [Google Scholar]
- Brodeur, J.R.; Chen, B.; Su, J.; Xu, Y.; Hussain, N.; Scaboo, K.M.; Cai, W.J. Chesapeake Bay inorganic carbon: Spatial distribution and seasonal variability. Front. Mar. Sci. 2019, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, Y. The Distribution of Partial Pressure of CO2 in the Bohai Sea in summer. Period. Ocean Univ. China 2008, 38, 635–639. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, L.; Song, M.; Jiang, C. Distribution of the surface partial pressure of CO2 in the southern Yellow Sea and its controls. Cont. Shelf Res. 2010, 30, 293–304. [Google Scholar] [CrossRef]
- Qu, B.; Song, J.; Yuan, H.; Li, X.; Li, N. Air-sea CO2 exchange process in the southern Yellow Sea in April of 2011, and June, July, October of 2012. Cont. Shelf Res. 2014, 80, 8–19. [Google Scholar] [CrossRef]
- Qu, B.; Song, J.; Yuan, H.; Li, X.; Li, N.; Duan, L.; Lu, X. Summer carbonate chemistry dynamics in the Southern Yellow Sea and the East China Sea: Regional variations and controls. Cont. Shelf Res. 2015, 111, 250–261. [Google Scholar] [CrossRef]
- Zhai, W.; Zheng, N.; Huo, C.; Xu, Y.; Zhao, H.; Li, Y.; Xu, X. Subsurface pH and carbonate saturation state of aragonite on the Chinese side of the North Yellow Sea: Seasonal variations and controls. Biogeosciences 2014, 11, 1103–1123. [Google Scholar] [CrossRef]
- Zhai, W.; Zhao, H.; Zheng, N.; Xu, Y. Coastal acidification in summer bottom oxygen-depleted waters in north western-northern Bohai Sea from June to August in 2011. Chin. Sci. Bull. 2012, 57, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H. Research of the Sedimentary Characteristics in Caofeidian Inshore. Master’s Thesis, Ludong University, Yantai, China, 2016. [Google Scholar]
- Dickson, A.G. Determination of Dissolved Oxygen in Sea Water by Winkler Titration; WHP Operations and Methods WHP Office Report Woods Hole Oceanographic Institution: Falmouth, MA, USA, 1994; pp. 1–14. [Google Scholar]
- Millero, F. Chemical Oceanography, 3rd ed.; CRC Press: Abingdon, UK, 2013. [Google Scholar]
- Mehrbach, C.; Culberson, C.H.; Hawley, J.E.; Pytkowicx, R.M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure 1. Limnol. Oceanogr. 1973, 18, 897–907. [Google Scholar] [CrossRef]
- Dickson, P.R.; Ginter, J.L. Market segmentation, product differentiation, and marketing strategy. J. Mark. 1987, 51, 1–10. [Google Scholar] [CrossRef]
- Dickson, A.G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res. 1990, 37, 755–766. [Google Scholar] [CrossRef]
- Liss, P.S.; Merlivat, L. Air-sea gas exchange rates: Introduction and synthesis. In The Role of Air-Sea Exchange in Geochemical Cycling; Springer: Dordrecht, The Netherlands, 1986; pp. 113–127. [Google Scholar]
- Peng, T.H.; Takahashi, T. Carbon Dioxide in the Ocean; Under Contract PE-ACO5-840R31400; April, Publication No. 3311; Environmental Sciences Division, ORNL: Oak Ridge, TN, USA, 1989. [Google Scholar]
- Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational constraints on the global atmospheric CO2 budget. Science 1990, 247, 1431–1438.10. [Google Scholar] [CrossRef]
- Wanninkhof, R.H. Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res. 1992, 97, 7373–7381. [Google Scholar] [CrossRef]
- Wanninkhof, R.H. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Ingrosso, G.; Giani, M.; Comici, C.; Kralj, M.; Piacentino, S.; De Vittor, C.; Del Negro, P. Drivers of the carbonate system seasonal variations in a Mediterranean gulf. Estuarine Coast. Shelf Sci. 2016, 168, 58–70. [Google Scholar] [CrossRef]
- Abril, G.; Etcheber, H.; Delille, B.; Borges, M.F.A.V. Carbonate dissolution in the turbid and eutrophic Loire estuary. Mar. Ecol. Prog. Ser. 2003, 259, 129–138. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Cai, W.; Wang, L.; Xue, M.; Zhang, X. Removal of dissolved inorganic carbon in the Yellow River Estuary. Limnol. Oceanogr. 2014, 59, 413–426. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Li, D.; Xu, Z.; Miao, Y.; Yang, Z.; Jin, H.; Chen, J. Characteristics of carbonate system in the Hangzhou Bay: Under the regulation of air-sea exchange and respiration. Haiyang Xuebao 2021, 43, 21–32. [Google Scholar] [CrossRef]
- Deng, X.; Hu, Y.; Liu, C.; Yang, G.; Lu, X.; Zhang, H. Distributions and seasonal variations of carbonate system in the Jiaozhou Bay, China. Oceanol. Limnol. Sin. 2016, 47, 234–244. [Google Scholar]
- Zheng, N. Distribution and Influence Factors of Inorganic Carbon in Main Rivers around Bohai and Bohai Sea in Summer. Master’s Thesis, Dalian Maritime University, Dalian, China, 2018. [Google Scholar]
- Fu, M.; Wang, Z.; Li, Y.; Li, R.; Sun, P.; Wei, X.; Guo, J. Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): Seasonal variability. Cont. Shelf Res. 2009, 29, 2178–2194. [Google Scholar] [CrossRef]
- Gong, X. Distribution and Influencing Factors of the Surface pCO2 Waters in Jiaozhou and Sanggou Bay during Spring. Master’s Thesis, Ocean University of China, Qingdao, China, 2014. [Google Scholar]
- Zhang, L.; Xue, M.; Liu, Q. Distribution and seasonal variation in the partial pressure of CO2 during autumn and winter in Jiaozhou Bay, a region of high urbanization. Mar. Poll. Bull. 2012, 64, 56–65. [Google Scholar] [CrossRef]
- Gong, X.; Han, P.; Zhang, L.; Xue, M.; Yang, X.; Wang, W. Distribution and controlling factors of sea Surface partial pressure of CO2 in Jiaozhou Bay during April. Period. Ocean Univ. China 2015, 45, 95–102. [Google Scholar]
- Zhang, Z.; Zhang, C.; Liu, L.; Gong, H.; Huang, H.; Liu, C. Multilayer-distribution of dissolved inorganic carbon (DIC) in surface sea water of the Yellow Sea in spring. Mar. Sci. 2008, 32, 36–43. [Google Scholar]
- Li, N.; Li, X.; Song, J. Key biogeochemistry processes of marine carbon cycle. Mar. Environ. Sci. 2005, 24, 75–80. [Google Scholar]
Station | Longitude | Latitude | Bot. Depth (m) | Temperature (°C) | Salinity (psu *) | Wind Speed (m/s) | CO2 Flux mmol/m2 a |
---|---|---|---|---|---|---|---|
BHB01 | 117.98 | 39.13 | 5 | 27.42 | 32.112 | 3.96 | 6.53 |
BHB02 | 118.12 | 39.12 | 5 | 27.09 | 31.849 | 5.74 | 6.80 |
BHB03 | 118.09 | 39.05 | 9 | 26.86 | 31.303 | 5.62 | 6.03 |
BHB04 | 118.33 | 38.96 | 10 | 25.73 | 31.658 | 2.21 | 1.02 |
BHB07 | 118.31 | 38.86 | 25 | 25.17 | 31.778 | 2.63 | 0.60 |
BHB08 | 118.17 | 38.93 | 15 | 25.57 | 31.678 | 4.27 | 2.69 |
BHB09 | 118.05 | 38.98 | 14 | 26.55 | 31.409 | 5.07 | 4.81 |
BHB10 | 117.93 | 39.03 | 9 | 27.30 | 31.254 | 5.75 | 3.83 |
BHB13 | 117.99 | 38.87 | 13 | 27.64 | 31.232 | 4.44 | 3.96 |
BHB16 | 118.32 | 38.67 | 19 | 26.60 | 31.751 | 2.26 | 0.14 |
BHB17 | 118.24 | 38.45 | 11 | 27.01 | 31.316 | 3.94 | 3.49 |
BHB18 | 118.10 | 38.59 | 13 | 26.19 | 31.345 | 4.87 | 5.82 |
BHB20 | 117.88 | 38.75 | 10 | 27.04 | 31.201 | 3.08 | 2.83 |
BHB21 | 117.79 | 38.82 | 10 | 27.43 | 31.258 | 4.31 | 5.86 |
BHB25 | 117.82 | 38.45 | 5 | 27.40 | 31.233 | 2.36 | 2.64 |
BHB26 | 117.88 | 38.51 | 7 | 27.44 | 31.465 | 2.24 | 0.84 |
BHB27 | 117.96 | 38.40 | 12 | 27.28 | 31.458 | 5.14 | 5.77 |
BHB29 | 118.04 | 38.50 | 9 | 27.27 | 31.324 | 5.12 | 5.23 |
BHB31 | 118.32 | 38.24 | 7 | 28.00 | 31.424 | 4.36 | 2.44 |
BHB32 | 118.48 | 38.19 | 4 | 28.96 | 31.408 | 5.13 | 3.44 |
BHB33 | 118.41 | 38.34 | 13 | 27.89 | 31.595 | 5.17 | 5.40 |
BHB34 | 118.62 | 38.25 | 10 | 27.53 | 31.394 | 7.80 | 10.97 |
BHB36 | 118.74 | 38.36 | 17 | 25.64 | 31.698 | 3.32 | 2.18 |
BHB37 | 118.92 | 38.23 | 15 | 24.78 | 31.524 | 3.83 | 2.87 |
BHB38 | 119.13 | 37.98 | 11 | 24.79 | 29.628 | 3.16 | 1.83 |
BHB40 | 119.14 | 38.42 | 23 | 25.69 | 31.918 | 1.66 | 0.13 |
BHB41 | 118.91 | 38.53 | 23 | 26.21 | 31.911 | 2.78 | 0.52 |
BHB42 | 119.14 | 38.75 | 27 | 26.71 | 31.696 | 5.44 | 1.38 |
BHB43 | 119.15 | 39.07 | 21 | 26.82 | 30.933 | 3.27 | 1.19 |
BHB45 | 118.98 | 39.14 | 10 | 26.71 | 32.053 | 3.32 | 1.14 |
BHB46 | 118.87 | 39.09 | 6 | 27.44 | 32.141 | 5.99 | 2.87 |
BHB48 | 118.66 | 39.09 | 14 | 28.23 | 32.152 | 3.80 | 4.49 |
BHB49 | 118.74 | 38.99 | 14 | 26.68 | 32.116 | 4.85 | 12.41 |
BHB50 | 118.87 | 38.88 | 24 | 26.30 | 31.546 | 3.35 | 2.08 |
BHB51 | 118.83 | 38.74 | 26 | 25.95 | 31.748 | 3.78 | 1.19 |
HH-2 | 117.74 | 38.97 | 16 | 28.49 | 23.436 | 1.78 | 3.43 |
HH-3 | 117.80 | 38.96 | 18 | 28.92 | 25.603 | 4.54 | 6.31 |
HH-4 | 117.85 | 38.94 | 18 | 28.56 | 29.260 | 4.19 | 1.31 |
JYC-1 | 117.74 | 39.11 | 3.5 | 28.27 | 28.520 | 3.28 | 8.13 |
JYC-2 | 117.75 | 39.09 | 7 | 28.42 | 29.566 | 1.01 | 0.58 |
JYC-3 | 117.77 | 39.08 | 7 | 28.72 | 29.254 | 4.60 | 7.53 |
JYC-5 | 117.83 | 39.07 | 9 | 28.44 | 30.561 | 0.45 | 0.05 |
Categories | DO (mg/L) | Chl-a (µg/L) | |||||
---|---|---|---|---|---|---|---|
Surface | 7.31 (2.87–8.96) | 9.17 (1.11–26.6) | 1.28 (0.01–7.68) | 2.81 (0.74–12) | 6.18 (0.21–18.50) | 0.29 (0.08–1.10) | 2.41 (0.17–10.04) |
Bottom | 6.38 (1.85–8.54) | 5.35 (0.98–13.89) | 1.47 (0.08–5.53) | 2.82 (0.85–9.00) | 6.04 (0.86–15.29) | 0.24 (0.08–0.78) | 3.22 (0.11–11.88) |
Rivers | Station | pH | Alk (µmol/kg) | DIC (µmol/kg) | pCO2 (µatm) |
---|---|---|---|---|---|
Luanhe Rive | GJDM24 | 7.97 | 3670 | 3558 | 1808 |
PTD22 | 8.39 | 3088 | 2926 | 595 | |
JHD3 | 8.03 | 2461 | 2328 | 1230 | |
HK07 | 7.72 | 4658 | 3548 | 2973 | |
Jiyun river | GJDM22 | 8.30 | 3165 | 3015 | 822 |
JHD6 | 8.89 | 4401 | 4085 | 223 | |
JHD5 | 8.45 | 5317 | 4368 | 938 | |
HK26 | 7.19 | 4427 | 2223 | 6770 | |
Ziya New River | JHD16 | 8.62 | 3479 | 3194 | 360 |
PTD31 | 8.58 | 2117 | 1911 | 258 | |
HK20 | 8.25 | 2833 | 2755 | 806 | |
Zhangwei New River | GJDM6 | 8.85 | 4186 | 3683 | 231 |
PTD6 | 8.38 | 6519 | 5887 | 1291 | |
HK54 | 7.81 | 2806 | 2457 | 1459 | |
Majia River | GJDM5 | 8.30 | 5848 | 5216 | 1198 |
JHD17 | 7.59 | 1231 | 1103 | 1102 | |
HK53 | 7.69 | 1307 | 1136 | 841 | |
Tuhai River | GJDM2 | 7.94 | 6412 | 5852 | 3831 |
JHD2 | 8.62 | 6179 | 5474 | 620 | |
JHD18 | 7.64 | 3294 | 2845 | 2592 | |
HK55 | 7.96 | 3169 | 2756 | 1051 |
Estuaries/Bays | pH | Alk | DIC | pCO2 (µatm) | Data Sources |
---|---|---|---|---|---|
Mediterranean Sea | 7.91 | 2696.2 μmol/kg | 2332.1 μmol/kg | 329 | [37] |
Loire estuary | - | 2.1–2.65 mEq/kg | 2200–2700µmol/kg | 700–2900 | [38] |
Yellow River Estuary (2008) | - | ~3242µmol/L | ~3178µmol/L | 400–750 | [39] |
Hangzhou Bay (2019) | - | 1886 μmol/kg | 1805 μmol/kg | 799 | [40] |
Jiaozhou Bay (2007) | 7.94 | 2163 µmol/kg | 2067 µmol/kg | 674 | [41] |
Bohai Bay (2016) | 8.13 | 2370 µmol/kg | 2133 µmol/kg | 499 | [42] |
Bohai Bay (2020) | 8.06 | 2338 µmol/kg | 2201 µmol/kg | 697 | This paper |
Surface | T | S | DO | Chl-a | |||||
---|---|---|---|---|---|---|---|---|---|
pH | −0.409 ** | 0.585 ** | 0.719** | −0.544 ** | −0.232 | −0.567 ** | −0.531 ** | −0.725** | −0.562 ** |
Alk | −0.192 | −0.132 | −0.093 | 0.042 | −0.068 | 0.054 | 0.030 | 0.057 | 0.019 |
DIC | −0.173 | −0.176 | −0.275 | 0.015 | −0.110 | 0.032 | 0.075 | 0.039 | 0.099 |
pCO2 | 0.389 ** | −0.720 ** | −0.772 ** | 0.579 ** | 0.174 | 0.546 ** | 0.559 ** | 0.748 ** | 0.638 ** |
Bottom | T | S | DO | Chl-a | |||||
pH | −0.058 | 0.424 ** | 0.697 ** | 0.099 | −0.207 | −0.131 | −0.478 ** | −0.542 ** | −0.592 ** |
Alk | 0.047 | −0.137 | −0.109 | −0.061 | 0.192 | −0.152 | 0.209 | 0.245 | 0.235 |
DIC | 0.189 | −0.165 | −0.106 | −0.077 | 0.302 | −0.393 * | 0.213 | 0.088 | 0.076 |
pCO2 | 0.171 | −0.518 ** | −0.649 ** | 0.027 | 0.234 | 0.061 | 0.550 ** | 0.565 ** | 0.649 ** |
transect A | T | S | DO | Chl-a | |||||
pH | 0.696 ** | −0.704 ** | 0.783 ** | 0.733 ** | 0.654 * | 0.489 | 0.658* | −0.625 | −0.476 |
Alk | 0.274 | −0.061 | 0.267 | −0.030 | 0.101 | 0.126 | 0.254 | −0.283 | −0.231 |
DIC | 0.195 | −0.020 | 0.116 | −0.196 | 0.132 | 0.216 | 0.253 | −0.174 | −0.345 |
pCO2 | −0.276 | 0.448 | −0.398 | −0.583 * | −0.422 | −0.334 | −0.275 | 0.284 | 0.122 |
transect B | T | S | DO | Chl-a | |||||
pH | 0.238 | −0.252 | 0.750 ** | 0.483 | −0.373 | −0.388 | −0.342 | −0.232 | −0.209 |
Alk | 0.332 | −0.518 | 0.523 | 0.070 | −0.041 | 0.033 | 0.087 | −0.009 | −0.134 |
DIC | 0.434 | −0.693 ** | 0.046 | 0.243 | 0.541 | −0.138 | 0.340 | −0.283 | −0.066 |
pCO2 | 0.012 | 0.032 | −0.617 * | −0.408 | 0.500 | 0.380 | 0.399 | 0.197 | 0.151 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Wu, X.; Sun, J. Distributions and Influencing Factors of Carbonate Species in Bohai Bay and Relevant Rivers Flowing into the Bay in Summer 2020. Water 2022, 14, 3389. https://doi.org/10.3390/w14213389
Yuan X, Wu X, Sun J. Distributions and Influencing Factors of Carbonate Species in Bohai Bay and Relevant Rivers Flowing into the Bay in Summer 2020. Water. 2022; 14(21):3389. https://doi.org/10.3390/w14213389
Chicago/Turabian StyleYuan, Xiaolong, Xi Wu, and Jun Sun. 2022. "Distributions and Influencing Factors of Carbonate Species in Bohai Bay and Relevant Rivers Flowing into the Bay in Summer 2020" Water 14, no. 21: 3389. https://doi.org/10.3390/w14213389
APA StyleYuan, X., Wu, X., & Sun, J. (2022). Distributions and Influencing Factors of Carbonate Species in Bohai Bay and Relevant Rivers Flowing into the Bay in Summer 2020. Water, 14(21), 3389. https://doi.org/10.3390/w14213389