Chemical-Free Biologically Enhanced Primary Treatment of Raw Wastewater for Improved Capture Carbon
Abstract
:1. Introduction
2. Experimental
2.1. Operational Setup for BEPT System
2.2. Biologically Enhanced Primary Treatment (BEPT) Experiments
3. Results and Discussions
3.1. Characteristics of Influent and Return Activated Sludge
3.2. Bench Scale Testing
3.3. Pilot Scale Results
3.4. Effect of Hydraulic Retention Time
3.5. Effect of Sludge Loading
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS | activated sludge |
BEPT | biologically enhanced primary treatment |
CEPT | chemically enhanced primary treatment |
COD | chemical oxygen demand |
COD-S | soluble chemical oxygen demand |
COD-T | total chemical oxygen demand |
DAF | dissolved air flotation |
DO | dissolved oxygen |
HRA | high rate-activated sludge |
HLR | hydraulic loading rate |
HRT | hydraulic retention time |
MBR | membrane bioreactor |
PT | primary treatment |
RAS | return activated sludge |
TSS | total suspended solids |
WWTPs | wastewater treatment plants |
WRRF | Water Resource Recovery Facility |
References
- Zessner, M.; Lampert, C.; Kroiss, H.; Lindtner, S. Cost comparison of wastewater treatment in Danubian countries. Water Sci. Technol. 2010, 62, 223–230. [Google Scholar] [CrossRef]
- Longo, S.; d’Antoni, B.M.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.M.; Mauricio-Iglesias, M.; Soares, A.; Hospido, A. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268. [Google Scholar] [CrossRef] [Green Version]
- Verstraete, W.; Van de Caveye, P.; Diamantis, V. Maximum use of resources present in domestic “used water”. Bioresour. Technol. 2009, 100, 5537–5545. [Google Scholar] [CrossRef]
- Scherson, Y.D.; Criddle, C.S. Recovery of freshwater from wastewater: Upgrading process configurations to maximize energy recovery and minimize residuals. Environ. Sci. Technol. 2014, 48, 8420–8432. [Google Scholar] [CrossRef]
- Wett, B.; Buchauer, K.; Fimml, C. Energy self-sufficiency as a feasible concept for wastewater treatment systems. In Proceedings of the IWA Leading Edge Technology Conference, Singapore, 3–6 June 2007. [Google Scholar]
- Bertanza, G.; Canato, M.; Laera, G. Towards energy self-sufficiency and integral material recovery in waste water treatment plants: Assessment of upgrading options. J. Clean. Prod. 2018, 170, 1206–1218. [Google Scholar] [CrossRef]
- Wan, J.; Gu, J.; Zhao, Q.; Liu, Y. COD capture: A feasible option towards energy self-sufficient domestic wastewater treatment. Sci. Rep. 2016, 6, 25054. [Google Scholar] [CrossRef] [Green Version]
- Papa, M.; Foladori, P.; Guglielmi, L.; Bertanza, G. How far are we from closing the loop of sewage resource recovery? A real picture of municipal wastewater treatment plants in Italy. J. Environ. Manag. 2017, 198, 9–15. [Google Scholar] [CrossRef]
- Jenkins, D.; Wanner, J. Activated Sludge—100 Years and Counting; IWA Publishing: London, UK, 2014. [Google Scholar]
- Jimenez, J.; Miller, M.; Bott, C.; Murthy, S.; De Clippeleir, H.; Wett, B. High-rate activated sludge system for carbon—Evaluation of crucial process mechanisms and design parameters. Water Res. 2015, 87, 476–482. [Google Scholar] [CrossRef]
- Saby, S.; Djafer, M.; Chen, G.H. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Water Res. 2003, 37, 11–20. [Google Scholar] [CrossRef]
- Sancho, I.; Lopez-Palau, S.; Arespacochaga, N.; Cortina, J.L. New concepts on carbon redirection in wastewater treatment plants: A review. Sci. Total Environ. 2019, 647, 1373–1384. [Google Scholar] [CrossRef]
- McCarty, P.L.; Bae, J.; Kim, J. Domestic wastewater treatment as a net energy producer—Can this be achieved? Environ. Sci. Technol. 2011, 45, 7100–7106. [Google Scholar] [CrossRef]
- Rahman, A.; Meerburg, F.A.; Ravadagundhi, S.; Wett, B.; Jimenez, J.; Bott, C.; Al-Omari, A.; Riffat, R.; Murthy, S.; De Clippeleir, H. Bioflocculation management through high-rate contact-stabilization: A promising technology to recover organic carbon from low-strength wastewater. Water Res. 2016, 104, 485–496. [Google Scholar] [CrossRef]
- Mou, T.; Long, J.; Frauenheim, T.; Xiao, J. Advances in electrochemical ammonia synthesis beyond the use of nitrogen gas as a source. ChemPlusChem 2021, 86, 1211–1224. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Chang, S.W.; Nguyen, D.D.; Liang, H.; Wang, J. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresour. Technol. 2018, 268, 749–758. [Google Scholar] [CrossRef]
- Khiewwijit, R.; Temmink, H.; Rijnaarts, H.; Keesman, K.J. Energy and nutrient recovery for municipal wastewater treatment: How to design a feasible plant layout? Environ. Model. Softw. 2015, 68, 156–165. [Google Scholar] [CrossRef]
- Lazarova, V.; Choo, K.H.; Cornel, P. (Eds.) Water-Energy Interactions in Water Reuse; IWA Publishing: London, UK, 2012. [Google Scholar]
- Procter, A.C.; Kaplan, P.; Araujo, R. Net zero fort carson: Integrating energy, water, and waste strategies to lower the environmental impact of a military base. J. Ind. Ecol. 2016, 20, 1134–1147. [Google Scholar] [CrossRef]
- Gude, V.G. Energy and water autarky of wastewater treatment and power generation systems. Renew. Sustain. Energy Rev. 2015, 45, 52–68. [Google Scholar] [CrossRef]
- Heidrich, E.S.; Curtis, T.P.; Dolfing, J. Determination of the Internal Chemical Energy of Wastewater. Environ. Sci. Technol. 2011, 45, 827–832. [Google Scholar] [CrossRef]
- Jing, H.; Wang, H.; Lin, C.S.K.; Zhuang, H.; To, M.H.; Leu, S.-Y. Biorefinery potential of chemically enhanced primary treatment sewage sludge to representative value-added chemicals—A de novo angle for wastewater treatment. Bioresour. Technol. 2021, 339, 125583. [Google Scholar] [CrossRef]
- Dolejš, P.; Varga, Z.; Luza, B.; Pícha, A.; Jeníček, P.; Jeison, D.; Bartáček, J. Maximizing energy recovery from wastewater via bioflocculation-enhanced primary treatment: A pilot scale study. Environ. Technol. 2019, 42, 2229–2239. [Google Scholar] [CrossRef]
- Cardoso, B.J.; Rodrigues, E.; Gaspar, A.R.; Gomes, Á. Energy performance factors in wastewater treatment plants: A review. J. Clean. Prod. 2021, 322, 129107. [Google Scholar] [CrossRef]
- Dong, T.; Shewa, W.A.; Murray, K.; Dagnew, M. Optimizing Chemically Enhanced Primary Treatment Processes for Simultaneous Carbon Redirection and Phosphorus Removal. Water 2019, 11, 547. [Google Scholar] [CrossRef] [Green Version]
- Cecconet, D.; Callegari, A.; Hlavínek, P.; Capodaglio, A.G. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: A critical review. Clean Technol. Environ. Policy 2019, 21, 745–762. [Google Scholar] [CrossRef]
- Fatah, M.M.A.A.; Al Bazedi, G.A. Chemically enhanced primary. Eur. J. Eng. Res. Sci. 2019, 4, 115–123. [Google Scholar] [CrossRef]
- Cagnetta, C.; Saerens, B.; Meerburg, F.A.; Decru, S.O.; Broeders, E.; Menkveld, W.; Vandekerckhove, T.G.; De Vrieze, J.; Vlaeminck, S.E.; Verliefde, A.R.; et al. High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery. Bioresour. Technol. 2019, 291, 121833. [Google Scholar] [CrossRef]
- Ding, H.-B.; Doyle, M.; Erdogan, A.; Wikramanayake, R.; Gallagher, P. Innovative use of dissolved air flotation with biosorption as primary treatment to approach energy neutrality in WWTPs. Water Pract. Technol. 2015, 10, 133–142. [Google Scholar] [CrossRef]
- Johnson, B.R.; Phillips, J.; Bauer, T.; Smith, G.; Smith, G.; Sherlock, J. Startup and Performance of the World’s First Large Scale Primary Dissolved Air Floatation Clarifier. 2014. Available online: https://www.evoqua.com/en/articles/daf-and-captivator-system-technical-papers/ (accessed on 23 February 2020).
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; Greenberg, A.E., Ed.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- Kyzas, G.Z.; Matis, K.A. The flotation process can go green. Processes 2019, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Poh, P.E.; Ong, W.; Von Lau, E.; Chong, M. Investigation on micro-bubble flotation and coagulation for the treatment of anaerobically treated palm oil mill effluent (POME). J. Environ. Chem. Eng. 2014, 2, 1174–1181. [Google Scholar] [CrossRef]
- Agarwal, A.; Ng, W.J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175–1180. [Google Scholar] [CrossRef]
- Rajapakse, N.; Zargar, M.; Sen, T.; Khiadani, M. Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review. Sep. Purif. Technol. 2022, 289, 120772. [Google Scholar] [CrossRef]
Maximum | Minimum | Average | Std. Deviation | |
---|---|---|---|---|
Biological Enhanced Primary Treatment with DAF | ||||
COD-T Removal% | 48.2 | 18.1 | 33.3 | 6.4 |
COD-S Removal% | 36 | 2.3 | 13.5 | 6.6 |
TSS Removal% | 78.8 | 22.6 | 44.6 | 8 |
Primary Sedimentation Tank | ||||
Subiaco PT COD-T Removal% | 40.3 | 3.6 | 23.9 | 9.6 |
COD-S Removal% | N.A | N.A | N.A | N.A |
TSS Removal% | 70.4 | 0.23 | 38.6 | 12.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azhar, M.R.; Nolan, P.; Cadee, K.; Khiadani, M. Chemical-Free Biologically Enhanced Primary Treatment of Raw Wastewater for Improved Capture Carbon. Water 2022, 14, 3825. https://doi.org/10.3390/w14233825
Azhar MR, Nolan P, Cadee K, Khiadani M. Chemical-Free Biologically Enhanced Primary Treatment of Raw Wastewater for Improved Capture Carbon. Water. 2022; 14(23):3825. https://doi.org/10.3390/w14233825
Chicago/Turabian StyleAzhar, Muhammad Rizwan, Paul Nolan, Keith Cadee, and Mehdi Khiadani. 2022. "Chemical-Free Biologically Enhanced Primary Treatment of Raw Wastewater for Improved Capture Carbon" Water 14, no. 23: 3825. https://doi.org/10.3390/w14233825
APA StyleAzhar, M. R., Nolan, P., Cadee, K., & Khiadani, M. (2022). Chemical-Free Biologically Enhanced Primary Treatment of Raw Wastewater for Improved Capture Carbon. Water, 14(23), 3825. https://doi.org/10.3390/w14233825