Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach—A Review
Abstract
:1. Introduction
2. Bacterial Laccases
2.1. Sources and Evolution
2.2. Production Conditions, Properties, Substrates, and Mediators
3. Catalytic Activity and Substrate Specificity
4. Factors Affecting Degradation of Pollutants by Microbial Enzymes
5. Applications of Laccases
5.1. Detoxification and Bioremediation of Industrial Effluents
5.2. Textile Dye Degradation and Decolorization
5.3. Bioremediation of Food Industry Wastewater Effluents
5.4. Other Applications
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gianfreda, L.; Xu, F.; Bollag, J.M. Laccases: A useful group of oxidoreductive enzymes. Bioremediat. J. 1999, 3, 1–25. [Google Scholar] [CrossRef]
- Tzanov, T.; Basto, C.; Gübitz, G.M.; Cavaco-Paulo, A. Laccases to Improve the Whiteness in a Conventional Bleaching of Cotton, Macromol. Mater. Eng. 2003, 288, 807–810. [Google Scholar]
- Susana, R.C.; Herrera, J.L.T. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 2006, 24, 500–513. [Google Scholar]
- Breen, A.; Singleton, F.L. Fungi in lignocellulose breakdown a biopulping. Curr. Opin. Biotechnol. 1999, 10, 252–258. [Google Scholar] [CrossRef]
- Li, K.; Xu, F.; Eriksson, K.E.L. Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl. Environ. Microbiol. 1999, 65, 2654–2665. [Google Scholar] [CrossRef] [Green Version]
- Kandelbauer, A.; Maute, O.; Kessler, R.W.; Erlacher, A.; Gübitz, G.M. Study of Dye Decolourization in an Immobilized Laccase Enzyme-Reactor Using Online Spectroscopy. Biotechnol. Bioeng. 2004, 87, 552–563. [Google Scholar] [CrossRef]
- Pointing, S.B.; Vrijmoed, L.L.P. Decolorization of azo and triphenylmethane dyes by Pycnoporussanguineusproducing laccase as the sole phenoloxidase. World J. Microbiol. Biotechnol. 2000, 16, 317–318. [Google Scholar] [CrossRef]
- Karam, J.; Nicell, J.A. Potential applications of enzymes in waste treatment. J. Chem. Technol. Biotechnol. 1997, 69, 141–153. [Google Scholar] [CrossRef]
- Raghukumar, C. Fungi from marine habitats: An application in bioremediation. Mycol. Res. 2000, 104, 1222–1226. [Google Scholar] [CrossRef]
- Bogan, B.W.; Lamar, R.T. Polycyclic aromatic hydrocarbon degradation capabilities of PhanerochaeteleavisHHB-1625 and its extracellular ligninolytic enzymes. Appl. Environ. Microbiol. 1996, 62, 1597–1603. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Kim, K.-S.; Lee, J.-H.; Lee, Y.-C. Cloning, expression in Escherichia coli, and enzymatic properties of laccase from Aeromonas hydrophila WL-11. J. Environ. Sci. 2010, 22, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, U.N.; Singh, P.; Pandey, V.P.; Kumar, A. Structure-function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B Enzym. 2011, 68, 117–128. [Google Scholar] [CrossRef]
- Deska, M.; Kończak, B. Immobilized fungal laccase as “green catalyst” for the decolourization process—State of the art. Process Biochem. 2019, 84, 112–123. [Google Scholar] [CrossRef]
- Fathali, Z.; Rezaei, S.; Faramarzi, M.A.; Habibi-Rezaei, M. Catalytic phenol removal using entrapped cross-linked laccase aggregates. Int. J. Biol. Macromol. 2019, 122, 359–366. [Google Scholar] [CrossRef]
- Su, J.; Fu, J.; Wang, Q.; Silva, C.; Cavaco-Paulo, A. Laccase: A green catalyst for the biosynthesis of poly-phenols. Crit. Rev. Biotechnol. 2018, 38, 294–307. [Google Scholar] [CrossRef] [Green Version]
- Bijekar, S.; Padariya, H.D.; Yadav, V.K.; Gacem, A.; Hasan, M.A.; Awwad, N.S.; Yadav, K.K.; Islam, S.; Park, S.; Jeon, B.-H. The State of the Art and Emerging Trends in the Wastewater Treatment in Developing Nations. Water 2022, 14, 2537. [Google Scholar] [CrossRef]
- Soloman, E.I.; Augustine, A.J.; Yoon, J. O2 reduction to H2O by the multicopper oxidases. Dalton Trans. 2008, 30, 3921–3932. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.; Wittmann, C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol. Adv. 2019, 37, 107360. [Google Scholar] [CrossRef]
- Zerva, A.; Simic, S.; Topakas, E.; Nikodinovic-Runic, J. Applications of microbial laccases: Patent review of the past decade (2009–2019). Catalysts 2019, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, W.J.; Ng, T.B.; Deng, X.Z.; Lin, J.; Ye, X.Y. Laccases: Production, expression regulation, and applications in pharmaceutical biodegradation. Front. Microbiol. 2017, 8, 832. [Google Scholar] [CrossRef] [Green Version]
- Paraschiv, G.; Ferdes, M.; Ionescu, M.; Moiceanu, G.; Zabava, B.S.; Dinca, M.N. Laccases—Versatile Enzymes Used to Reduce Environmental Pollution. Energies 2022, 15, 1835. [Google Scholar] [CrossRef]
- Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 2016, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Park, S.-M.; Kim, D.-H. Heterologous expression of a tannic acid-inducible laccase3 of Cryphonectria parasitica in Saccharomyces cerevisiae. BMC Biotechnol. 2010, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, W.; Sun, C.; Liang, J.; Han, Y.; Yu, J.; Liang, Z. Improvement of laccase production and its characterization by mutagenesis. J. Food Biochem. 2015, 39, 101–108. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Dasgupta, A.K.; Chakrabarti, K. Thermostability, ph stability and dye degrading activity of a bacterial laccase are enhanced in the presence of Cu2o nanoparticles. Bioresour. Technol. 2013, 127, 25–36. [Google Scholar] [CrossRef]
- Givaudan, A.; Effosse, A.; Faure, D.; Potier, P.; Bouillant, M.-L.; Bally, R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 1993, 108, 205–210. [Google Scholar] [CrossRef]
- Enguita, F.J.; Martins, L.O.; Henriques, A.O.; Carrondo, M.A. Crystal structure of a bacterial endospore coat component: A laccase with enhanced thermostability properties. J. Biol. Chem. 2003, 278, 19416–19425. [Google Scholar] [CrossRef] [Green Version]
- Bains, J.; Capalash, N.; Sharma, P. Laccase from a non-melanogenic, alkalotolerant γ-proteobacterium JB isolated from industrial wastewater drained soil. Biotechnol. Lett. 2003, 25, 1155–1159. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase properties, physiological functions, and evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Chandra, R. Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolourisation by a potential bacterial consortium. Biodegradation 2012, 23, 609–620. [Google Scholar] [CrossRef]
- Chandra, R.; Singh, R. Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem. Eng. J. 2012, 61, 49–58. [Google Scholar] [CrossRef]
- Narnoliya, L.K.; Agarwal, N.; Patel, S.N.; Singh, S.P. Kinetic characterization of laccase from Bacillus atrophaeus, and its potential in juice clarification in free and immobilized forms. J. Microbiol. 2019, 57, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Sharma, K.K.; Jacob, S.; Gakhar, S.K. Molecular docking of laccase protein from Bacillus safensis DSKK5 isolated from earthworm gut: A novel method to study dye decolorization potential. Water Air Soil Pollut. 2014, 225, 2175. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Goradia, B.; Saxena, A. Bacterial laccase: Recent update on production, properties and industrial applications. 3 Biotech 2017, 7, 323. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.J.; Park, J.H. Refolding, characterization, and dye decolorization ability of a highly thermostable laccase from Geobacillus sp. JS12. Protein Expr. Purif. 2020, 173, 105646. [Google Scholar] [CrossRef]
- Road, H. Production and purification strategies for laccase. Int. J. Pharm. Sci. Res. 2020, 11, 2617–2625. [Google Scholar] [CrossRef]
- Karuna, D.; Poonam, S. Production, partial purification and characterization of laccase from rhizospheric bacteria Pseudomonas putida strain LUA15.1. Res. J. Biotechnol. 2020, 15, 144–152. [Google Scholar]
- Deepa, T.; Gangwane, A.K.; Sayyed, R.Z.; Jadhav, H.P. Optimization and scale-up of laccase production by Bacillus sp. BAB-4151 isolated from the waste of the soap industry. Environ. Sustain. 2020, 3, 471–479. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Puri, N.; Sharma, P.; Gupta, N. Mannanases: Microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biotechnol. 2012, 93, 1817–1830. [Google Scholar] [CrossRef]
- Rezaei, S.; Shahverdi, A.R.; Faramarzi, M.A. Isolation, one-step affinity purification, and characterization of a polyextremotolerantlaccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour. Technol. 2017, 230, 67–75. [Google Scholar] [CrossRef]
- Diamantidis, G.; Effosse, A.; Potier, P.; Bally, R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem. 2000, 32, 919–927. [Google Scholar] [CrossRef]
- Forootanfar, H.; Faramarzi, M.A. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications. Biotechnol. Prog. 2015, 31, 1443–1463. [Google Scholar] [CrossRef] [PubMed]
- Bourbonnais, R.; Paice, M.G. Oxidation of non-phenolic substrates. FEBS Lett. 1990, 267, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Srivastava, S.K. Production of extracellular laccase from bacterial strain Bacillus subtilis MTCC 1039 using different parameter. Biosci. Biotechnol. Res. Asia 2016, 13, 1645–1650. [Google Scholar] [CrossRef]
- Muthukumarasamy, N.P.; Jackson, B.; Raj, J.A.; Sevanan, M. Production of extracellular laccase from Bacillus subtilis TCCng agroresidues as a potential substrate. Biochem. Res. Int. 2015, 2015, 765190. [Google Scholar] [CrossRef] [Green Version]
- Rajeswari, M.; Vennila, K.; Bhuvaneswari, V. Optimization of laccase production media by Bacilllus cereus TSS1 using Box-Behnken design. Int. J. Chem. Pharm. Sci. 2015, 6, 95–101. [Google Scholar]
- Sondhi, S.; Sharma, P.; Saini, S.; Puri, N.; Gupta, N. Purification andcharacterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS ONE 2014, 9, e96951. [Google Scholar] [CrossRef] [Green Version]
- Sheikhi, F.; Ardakani, M.R.; Enayatizamir, N.; Couto, S.R. The determination of assay for laccase of Bacillus subtilis WPI with two classes of chemical compounds as substrates. Indian J. Microbiol. 2012, 52, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Zhao, M.; Wang, N.Y.; Zhao, L.Y.; Du, M.H.; Li, T.L.; Li, D.B. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour. Technol. 2012, 115, 35–40. [Google Scholar] [CrossRef]
- Arunkumar, T.; Alexanand, D.; Narendrakumar, G. Application of response surface methodology (RSM)-CCD for the production of laccase using submerged fermentation. Int. J. Pharm. Bio Sci. 2014, 5, 429–438. [Google Scholar]
- McMahon, A.M.; Doyle, E.M.; Brooks, S.; O’Connor, E.K. Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzym. Microb. Technol. 2006, 4, 1435–1441. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, M.; Lu, L.; Wei, Z.; Li, T. Characterization of spore laccase from Bacillus subtilis WD23 and its use in dye decolorization. Afr. J. Biotechnol. 2011, 10, 2186–2192. [Google Scholar]
- Margot, J.; Granier, C.B.; Maillard, J.; Bla’nquez, P.; Barry, D.A.; Holliger, C. Bacterial versus fungal laccase: Potential for micropollutant degradation. J Appl. Microbiol. Biotechnol. Express 2013, 3, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devi, P.; Kandasamy, S.; Chendrayan, K.; Uthandi, S. Laccase producing Streptomyces bikiniensis CSC12 isolated from compost. J. Microb. Biotechnol. Food Sci. 2016, 6, 794–798. [Google Scholar]
- Guan, Z.B.; Luo, Q.; Wang, H.R.; Chen, Y.; Liao, X.R. Bacterial laccases: Promising biological green tools for industrial applications. Cell. Mol. Life Sci. 2018, 75, 3569–3592. [Google Scholar] [CrossRef]
- Kalme, S.; Jadhav, S.; Jadhav, M.; Govindwar, S. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzym. Microb. Technol. 2008, 44, 65–71. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. Auto Dock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar]
- Arora, D.; Sharma, R. Ligninolytic fungal laccases and their biotechnological applications. Appl. Biochem. Biotechnol. 2010, 160, 1760–1788. [Google Scholar] [CrossRef]
- Mate, D.M.; Alcalde, M. Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Microb. Biotechnol. 2017, 10, 1457–1467. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.; Chowdhary, P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ. Sci. Process. Impacts 2015, 17, 326–342. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, Y.; Du, B.; Tong, C.; Liang, S.; Han, S.; Zheng, S.; Lin, Y. Overexpression of a novel thermostable and chloridetolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization. PLoS ONE 2015, 10, e0119833. [Google Scholar]
- Gupta, N.; Lee, F.S.; Farinas, E.T. Laboratory evolution of laccase for substrate specificity. J. Mol. Catal. B Enzym. 2010, 62, 230–234. [Google Scholar] [CrossRef]
- Chandra, R.; Abhishek, A.; Sankhwar, M. Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products. Bioresour. Technol. 2011, 102, 6429–6436. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Singh, V.P. Textile Dyes Degradation: A Microbial Approach for Biodegradation of Pollutants. In Microbial Degradation of Synthetic Dyes Inn Waste Waters, Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Bisht, S.; Pandey, P.; Bhargava, B.; Sharma, S.; Sharma, K.D. Bioremediation of Polyaromatic Hydrocarbons (PAHs) using rhixosphere technology. Braz. J. Microbiol. 2015, 46, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Atlas, R.M. Microbial Degradation of Petroleum Hydrocarbons: An Environmental Perspective. Microbiol. Rev. 1981, 45, 180–209. [Google Scholar] [CrossRef]
- Couto, S.R. Dye removal by immobilised fungi. Biotechnol. Adv. 2009, 27, 227–235. [Google Scholar] [CrossRef]
- Baughman, G.L.; Perenich, T.A. Fate of dyes in aquatic systems: I solubility and partitioning of some hydrophobic dyes and related compounds. Environ. Toxicol. Chem. 1988, 7, 183–199. [Google Scholar] [CrossRef]
- Guan, Z.B.; Shui, Y.; Song, C.M.; Zhang, N.; Cai, Y.J.; Liao, X.R. Efcient secretory production of CotA-laccase and its application in the decolorization and detoxifcation of industrial textile wastewater. Environ. Sci. Pollut. Res. 2015, 22, 9515–9523. [Google Scholar] [CrossRef]
- Khlif, R.; Belbahri, L.; Woodward, S.; Ellouz, M.; Dhouib, A.; Sayadi, S.; Mechichi, T. Decolourization and detoxifcation of textile industry wastewater by the laccase-mediator system. J. Hazard. Mater. 2010, 175, 802–808. [Google Scholar] [CrossRef]
- Singh, G.; Bhalla, A.; Kaur, P.; Capalash, N.; Sharma, P. Laccase from prokaryotes: A new source for an old enzyme. Rev. Environ. Sci. Biotechnol. 2011, 10, 309–326. [Google Scholar] [CrossRef]
- Hou, H.; Zhou, J.; Wang, C.; Yan, B. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem. 2004, 39, 1415–1419. [Google Scholar] [CrossRef]
- Dominguez, A.; Couto, S.R.; Sanoroman, M.A. Dye decolourisation by Trametes histuta immobilized into alginate beads. World J. Biotechnol. 2005, 21, 405–409. [Google Scholar] [CrossRef]
- Juang, R.S.; Tseng, R.L.; Wu, F.C.; Lin, S.J. Use of chitin and chitosan in lobster shell wastes for color removal from aqueous solutions. J. Environ. Sci. Eng. 1996, 31, 325–338. [Google Scholar] [CrossRef]
- Chivukula, M.; Renganathan, V. Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae. Appl. Environ. Microbiol. 1995, 61, 4374–4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanquez, P.; Casas, N.; Font, X.; Gabarrell, X.; Sarr’a, M.; Caminal, G.; Vicent, T. Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res. 2004, 38, 2166–2172. [Google Scholar] [CrossRef]
- Dube, E.; Shareck, F.; Hurtubise, Y.; Daneault, C.; Beauregard, M. Homologous cloning, expression and charatterization of a laccase from Streptomyces coelicolor and enzymatic decolorization of an indigo dye. Appl. Microbiol. Biotechnol. 2008, 79, 597–603. [Google Scholar] [CrossRef]
- Osma, J.F.; Toca-Herrera, J.L.; RodrÂguez-Couto, S. Uses of laccases in the food industry. Enzym. Res. 2010, 2010, 918761. [Google Scholar] [CrossRef] [Green Version]
- Krastanov, A. Removal of phenols from mixtures by coimmobilized laccase-tyrosinase and Polyclar adsorption. J. Ind. Microbiol. Biotechnol. 2000, 24, 383–388. [Google Scholar] [CrossRef]
- Lante, A.; Crapisi, A.; Krastanov, A.; Spettoli, P. Biodegradation of phenols by laccase immobilised in a membrane reactor. Process Biochem. 2000, 36, 51–58. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A.; et al. Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. Materials 2022, 15, 953. [Google Scholar] [CrossRef]
- Brenna, O.; Bianchi, E. Immobilized laccase for phenolic removal in must and wine. Biotechnol. Lett. 1994, 16, 35–40. [Google Scholar] [CrossRef]
- Yue, Q.; Yang, Y.; Zhao, J.; Zhang, L.; Xu, L.; Chu, X.; Liu, X.; Tian, J.; Wu, N. Identification of bacterial laccase cueO mutation from the metagenome of chemical plant sludge. Bioresour. Bioprocess 2017, 4, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Lončar, N.; Božić, N.; Vujčić, Z. Expression and characterization of a thermostable organic solvent-tolerant laccase from Bacillus licheniformis ATCC 9945a. J. Mol. Catal. B Enzym. 2016, 134, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Sousa, A.C.; Piedade, M.F.M.D.; Martins, L.O.; Robalo, M.P.A. Eco-friendly synthesis of indo dyes mediated by a bacterial laccase. Green Chem. 2016, 18, 6063–6070. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Fei, R.; Zhang, X.; Tang, H.; Hu, Y. Sustainable endospore-based microreactor system for antioxidant capacity assay. Anal. Chem. 2014, 86, 11578–11585. [Google Scholar] [CrossRef] [PubMed]
- Zhiming, Z.; Longjian, T.; Zheng, L.; Lina, J.; Xinya, Z.; Miaomiao, X.; Yonggang, H. Whole-cell method for phenol detection based on the color reaction of phenol with 4-aminoantipyrine catalyzed by CotA laccase on endospore surfaces. Biosens. Bioelectron. 2015, 69, 162–166. [Google Scholar]
- Dana, M.; Khaniki, G.B.; Mokhtarieh, A.A.; Davarpanah, S.J. Biotechnological and Industrial Applications of Laccase: A Review. J. Appl. Biotechnol. Rep. 2017, 4, 675–679. [Google Scholar]
- Arregui, L.; Ayala, M.; Gomez Gil, X.; Gutierrez Soto, G.; Hernandez Luna, C.E.; de los Santos, M.H.; Levin, L.; Rojo Dominguez, A.; Romero Martinez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell. Fact. 2019, 18, 200. [Google Scholar] [CrossRef] [Green Version]
- Debnath, R.; Saha, T. An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatal. Agric. Biotechnol. 2020, 26, 101645. [Google Scholar] [CrossRef]
- Patel, H.; Yadav, V.K.; Yadav, K.K.; Choudhary, N.; Kalasariya, H.; Alam, M.M.; Gacem, A.; Amanullah, M.; Ibrahium, H.A.; Park, J.-W.; et al. A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries. Water 2022, 14, 3163. [Google Scholar] [CrossRef]
- Modi, S.; Yadav, V.K.; Gacem, A.; Ali, I.H.; Dave, D.; Khan, S.H.; Yadav, K.K.; Rather, S.-u.; Ahn, Y.; Son, C.T.; et al. Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles. Water 2022, 14, 1749. [Google Scholar] [CrossRef]
Name of the Organism | Substrate Used | Optimum Temperature for Activity (°C) | Optimum pH of Activity | Mol. Wt. of Protein | References |
---|---|---|---|---|---|
Aquisalibacillus elongatus | 2,4-dimethoxy phenol | 40 | 8.0 | 69 | [38] |
Azospirillum lipoferum | Syringaldazine | 70 | 6.0 | 81.5 | [39] |
Bacillus Subtilis MTCC1039 | Guaiacol | 30 | 5.0 | NR | [40,41,42] |
Bacillus Subtilis MTCC 2414 | Guaiacol | 30–40 | 7.0 | NR | [41,42,43] |
Bacillus cereus TSS1 | Guaiacol | 37 | 7.0 | NR | [42,43,44] |
Bacillus tequilensis SN4 MTCC 11828 | 2,4-dimethoxy phenol | 85 | 8.0 | 75% pH | [43,44,45] |
Bacillus safenis DSKK5 | NR | 37 | 6.2 | NR | [31,44,45] |
Bacillus subtilis WPI | 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid | 25 | NR | NR | [31,45,46] |
Bacillus licheniformis LS04 | 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid | 60 | 4.4 | NR | [31,45,46] |
2,4-dimethoxy phenol | |||||
Syringaldazine | |||||
Pseudomonas aeruginosa | 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid | 35 | 6.0 | NR | [46,47,48] |
Pseudomonas putida F6Q | Syringaldazine | 30 | 7.0 | 59 | [47,48,49] |
Stenotrophomonas maltophilia | Syringaldazine | 60 | 6.8 | NR | [48,49,50] |
Streptomycetes species | 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid | 35 | 6.0 | NR | [46,47,48] |
Streptomycetes cyaneus | 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid | 60 | 4.5 | NR | [49,50,51] |
Streptomyces bikiniensis | Syringaldazine | 6–7 | 50–60 | 69 | [50,51,52] |
Geobacillusthermocatenulatus | 2,2′-azino-bis(3-ethylbenzothiaziline-6-sulphonic acid | 37 | 6.2 | NR | [51,52,53] |
Bacillus HR03 | Syringaldazine, 2,4-dimethoxy phenol | 55 | 5.5 | 20 | [31,52,53] |
Pseudomonas desmolyticum | Hydroquinone | 60 | 4.0 | 43 | [31,53,54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, N.; Solanki, V.S.; Gacem, A.; Hasan, M.A.; Pare, B.; Srivastava, A.; Singh, A.; Yadav, V.K.; Yadav, K.K.; Lee, C.; et al. Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach—A Review. Water 2022, 14, 4068. https://doi.org/10.3390/w14244068
Agarwal N, Solanki VS, Gacem A, Hasan MA, Pare B, Srivastava A, Singh A, Yadav VK, Yadav KK, Lee C, et al. Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach—A Review. Water. 2022; 14(24):4068. https://doi.org/10.3390/w14244068
Chicago/Turabian StyleAgarwal, Neha, Vijendra Singh Solanki, Amel Gacem, Mohd Abul Hasan, Brijesh Pare, Amrita Srivastava, Anupama Singh, Virendra Kumar Yadav, Krishna Kumar Yadav, Chaigoo Lee, and et al. 2022. "Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach—A Review" Water 14, no. 24: 4068. https://doi.org/10.3390/w14244068
APA StyleAgarwal, N., Solanki, V. S., Gacem, A., Hasan, M. A., Pare, B., Srivastava, A., Singh, A., Yadav, V. K., Yadav, K. K., Lee, C., Lee, W., Chaiprapat, S., & Jeon, B. -H. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach—A Review. Water, 14(24), 4068. https://doi.org/10.3390/w14244068