Wastewater Treatment with the Natural Sorbents from the Arctic
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Peat
3.2. Moss and Reindeer Moss
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dmitrievsky, A.N.; Eremin, N.A.; Shabalin, N.A.; Kondratyuk, A.T.; Eremin, A.N. State and prospects of traditional and intellectual development of hydrocarbon resources of the Arctic shelf. Bus. J. Neftegaz. Ru. 2017, 1, 32–41. Available online: https://magazine.neftegaz.ru/articles/rynok/538351-sostoyanie-i-perspektivy-osvoeniya-uglevodorodnykh-resursov-arkticheskogo-shelfa-rossii/ (accessed on 28 August 2022).
- Daley, K.; Truelstrup Hansen, L.; Jamieson, R.C.; Hayward, J.L.; Piorkowski, G.S.; Krkosek, W.; Gagnon, G.A.; Castleden, H.; MacNeil, K.; Poltarowicz, J.; et al. Chemical and microbial characteristics of municipal drinking water supply systems in the Canadian Arctic. Environ. Sci. Pollut. Res. 2018, 25, 32926–32937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezentseva, O.V.; Volkovskaya, N.P.; Zakharova, V.P.; Guryanova, V.V. Pollution of the west Siberian Rivers by oil products for the period 2000–2017. Uspekhi Sovrem. Estestvozn. 2018, 12–1, 175–181. [Google Scholar]
- Vialkova, E.; Maksimova, S.; Zemlyanova, M.; Maksimov, L.; Vorotnikova, A. Integrated Design Approach to Small Sewage Systems in the Arctic Climate. Environ. Process. 2020, 7, 673–690. [Google Scholar] [CrossRef]
- Hickel, K.A.; Dotson, A.; Thomas, T.K.; Heavener, M.; Hébert, J.; Warren, J.A. The Search for an Alternative to Piped Water and Sewer Systems in the Alaskan Arctic. Environ. Sci. Pollut. Res. 2018, 25, 32873–32880. [Google Scholar] [CrossRef] [PubMed]
- Kallenborn, R.; Brorström-Lundén, E.; Reiersen, L.-O.; Wilson, S. Pharmaceuticals and Personal Care Products (PPCPs) in Arctic Environments: Indicator Contaminants for Assessing Local and Remote Anthropogenic Sources in a Pristine Ecosystem in Change. Environ. Sci. Pollut. Res. 2018, 25, 33001–33013. [Google Scholar] [CrossRef] [PubMed]
- Matveeva, V.A.; Alekseenko, A.V.; Karthe, D.; Puzanov, A.V. Manganese Pollution in Mining-Influenced Rivers and Lakes: Current State and Forecast under Climate Change in the Russian Arctic. Water 2022, 14, 1091. [Google Scholar] [CrossRef]
- Dzyubo, V.V. Filtering materials and operating parameters of water purifiers. Vestn. Tomsk. Gos. Arkhitekturno-Stroit. Univ. J. Constr. Archit. 2019, 1, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Levakov, I.; Shahar, Y.; Rytwo, G. Carbamazepine Removal by Clay-Based Materials Using Adsorption and Photodegradation. Water 2022, 14, 2047. [Google Scholar] [CrossRef]
- Liu, Z.; Singer, S.; Tong, Y.; Kimbell, L.; Anderson, E.; Hughes, M.; Zitomer, D.; McNamara, P. Characteristics and applications of biochars derived from wastewater solids. Renew. Sustain. Energy Rev. 2018, 90, 650–664. [Google Scholar] [CrossRef]
- Xia, Y.; Li, W.; He, X.; Liu, D.; Sun, Y.; Chang, J.; Liu, J. Efficient Removal of Organic Matter from Biotreated Coking Wastewater by Coagulation Combined with Sludge-Based Activated Carbon Adsorption. Water 2022, 14, 2446. [Google Scholar] [CrossRef]
- Privalova, N.M.; Dvadnenko, M.V.; Nekrasova, A.A.; Popova, O.S.; Privalov, D.M. Oily wastewater purification with natural and artificial absorbents. Nauchnyi Zhurnal KubGAU 2015, 113-09, 10. [Google Scholar]
- Bannova, E.A.; Kitaeva, N.K.; Merkov, S.M.; Muchkina, M.V.; Zaloznaya, E.P.; Martynov, P.N. Study of a method for obtaining a hydrophobic sorbent based on modified peat. Sorpt. Chromatogr. Process. 2013, 13, 60–68. [Google Scholar]
- Peng, Y.; Li, Y.; Tang, S.; Zhang, L.; Zhang, J.; Zhao, Y.; Zhang, X.; Zhu, Y. Dynamic Adsorption of As(V) onto the Porous α-Fe2O3/Fe3O4/C Composite Prepared with Bamboo Bio-Template. Water 2022, 14, 1848. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.; Lee, Y.-G.; Chon, K. Enhanced Adsorptive Removal of Dyes Using Mandarin Peel Biochars via Chemical Activation with NH4Cl and ZnCl2. Water 2021, 13, 1495. [Google Scholar] [CrossRef]
- Voronov, A.A.; Maksimova, S.V.; Osipova, E.Y. Purification of urbanized melt water with plant sorbents. Vestn. Tomsk. Gos. Arkhitekturno-Stroit. Univ. J. Constr. Archit. 2021, 2, 105–117. [Google Scholar] [CrossRef]
- Rahman, N.U.; Ullah, I.; Alam, S.; Khan, M.S.; Shah, L.A.; Zekker, I.; Burlakovs, J.; Kallistova, A.; Pimenov, N.; Vincevica-Gaile, Z.; et al. Activated Ailanthus altissima Sawdust as Adsorbent for Removal of Acid Yellow 29 from Wastewater: Kinetics Approach. Water 2021, 13, 2136. [Google Scholar] [CrossRef]
- Wahi, R.; Chuah, L.A.; Choong, T.S.Y.; Ngaini, Z.; Nourouzi, M.M. Oil removal from aqueous state by natural fibrous sorbent: An overview. Sep. Purif. Technol. 2013, 113, 51–63. [Google Scholar]
- Malyshkina, E.S.; Vyalkova, E.I.; Osipova, E.Y. Water purification with natural sorbents. Vestn. Tomsk. Gos. Arkhitekturno-Stroit. Univ. J. Constr. Archit. 2019, 1, 188–200. [Google Scholar] [CrossRef]
- Faizal, A.M.; Kutty, S.R.M.; Ezechi, E.H. Modelling of Adams-Bohart and Yoon-Nelson on the Removal of Oil from Water Using Microwave Incinerated Rice Husk Ash (MIRHA). Appl. Mech. Mater. 2014, 625, 788–791. [Google Scholar] [CrossRef]
- Taufik, S.H.; Ahmad, S.A.; Zakaria, N.N.; Shaharuddin, N.A.; Azmi, A.A.; Khalid, F.E.; Merican, F.; Convey, P.; Zulkharnain, A.; Abdul Khalil, K. Rice Straw as a Natural Sorbent in a Filter System as an Approach to Bioremediate Diesel Pollution. Water 2021, 13, 331. [Google Scholar] [CrossRef]
- Bakhia, T.; Khamizov, R.K.; Bavizhev, M.D.; Konov, M.A. The effect of microwave treatment of clinoptilolite on its ion-exchange kinetic properties. Sorpt. Chromatogr. Process. 2016, 16, 803–812. [Google Scholar]
- Berdonosov, S.S. Microwave Chemistry. Mosc. MSU 2001, 7, 32–38. [Google Scholar]
- Vialkova, E.; Obukhova, M.; Belova, L. Microwave Irradiation in Technologies of Wastewater and Wastewater Sludge Treatment: A Review. Water 2021, 13, 1784. [Google Scholar] [CrossRef]
- Staicu, V.; Luntraru, C.; Calinescu, I.; Chisega-Negrila, C.G.; Vinatoru, M.; Neagu, M.; Gavrila, A.I.; Popa, I. Ultrasonic or Microwave Cascade Treatment of Medicinal Plant Waste. Sustainability 2021, 13, 12849. [Google Scholar] [CrossRef]
- Denisova, T.R.; Shaikhiev, I.G.; Sippel’, I.Y. Ash sawdust oil capacity increased by acid solution treatment. Vestn. Tekhnologicheskogo Univ. 2017, 18, 233–235. [Google Scholar]
- Mikova, N.M.; Skvortsova, G.P.; Mazurova, E.V.; Chesnokov, N.V. Influence of the cross-linking effect on the properties of sorbents obtained from aspen and larch bark. J. Appl. Chem. 2019, 92, 1333–1343. [Google Scholar]
- Molaudzi, N.R.; Ambushe, A.A. Sugarcane Bagasse and Orange Peels as Low-Cost Biosorbents for the Removal of Lead Ions from Contaminated Water Samples. Water 2022, 14, 3395. [Google Scholar] [CrossRef]
- Urlikh, D.V.; Timofeeva, S.S.; Bryukhtov, M.N. Possibilities to use leafy moss in wastewater treatment. Bull. Irkutsk. State Tech. Univ. 2013, 13, 136–139. [Google Scholar]
- Khan, Q.; Zahoor, M.; Salman, S.M.; Wahab, M.; Talha, M.; Kamran, A.W. Removal of Chromium (VI) from the Steel Mill Effluents Using the Chemically Modified Leaves of Pteris vittata as Adsorbent. Water 2022, 14, 2599. [Google Scholar] [CrossRef]
- Vialkova, E.I. Study of Natural Minerals and Production Wastes of the Tyumen Region and the Ural Region in Order to Purify Water and Soil. Ph.D. Thesis, Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN), Novosibirsk, Russia, 1999. Available online: https://search.rsl.ru/ru/record/01000265691 (accessed on 30 August 2022).
- Sergeeva, E.S.; Laptedulche, N.K. Development of approaches to modeling the processes of purification of oily waters in dynamic conditions with natural sorbents. Energy Sav. Energy Dissipation 2009, 4, 9–11. [Google Scholar]
- Degtyarev, K.S. Peat Is an Underestimated Resource of Russia. Available online: http://www.c-o-k.ru/ (accessed on 5 December 2022).
- Couillard, D. The use of peat in wastewater treatment. Water Res. 1998, 28, 1261–1274. [Google Scholar] [CrossRef]
- Perez, J.; Ramos, A.; Ordonez, J.; Gomes, M. Dual-stage peat beds in small community wastewater treatment. J. Environ. Sci. Health Part A 2007, 42, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Prodous, O.A.; Mikhailov, A.V. The experience of using peat filtration for surface runoff treatment. Water Supply Sanit. Tech. 2016, 3, 34–39. Available online: https://www.vstnews.ru/en/archives-all/2019/2019-3/7500-opyt-primeneniya (accessed on 5 December 2022).
- Moseev, D.S.; Sergiyenko, L.A.; Kuzmina, E.Y. New moss species (Bryophyta) for the Franz Josef Land (Russian Arctic). Nov. Sist. Nizshikh Rastenii 2018, 52, 195–203. [Google Scholar] [CrossRef]
- Mingalimova, A.I.; Skorobogatova, O.N.; Koneva, V.V. Lichen composition in the floodplain of the Agan river (Khanty-Mansiysk-Autonomous Area—Yugra). Vestn. NVSU 2016, 2, 17–22. Available online: https://vestnik.nvsu.ru/2311-1402/article/view/49423 (accessed on 5 December 2022).
Sorbent | Modification | Parameters | Result and Efficiency | [Ref./No] |
---|---|---|---|---|
Peat | Microwave heating | Power MV 60–600 W, 12–60 min | Oil intensity increases to 2.5–2.73 g/g | [13] |
Pine sawdust | Microwave heating | Power MV 600 W, 2 min | Increase in sorption capacity for dissolved oil products by 3.7–4 times | [19] |
Ash sawdust | Acid treatment | 3% HNO 30 min | Increase in oil intensity by 43% to 5.93 g/g | [26] |
Poplar branches | Grinding, washing, drying | Fraction size no more than 2 mm | Extraction of dissolved oil products is 0.17 mg/g | [16] |
Rice husk | Combustion | Temperature 500–800 °C | Removal of oil products from water 78–98% | [20] |
Rice straw | Heating | Temperature 140 °C, 10 min | The efficiency of extracting diesel fuel from sea water is increased by 1.32 times | [21] |
Aspect of Sorbent | Sampling Location and Description |
---|---|
Peat This field is located along the Shchuchye River, about 15 km from the village of Beloyarsk (YNAO). The peat sample has a special loose fibrous structure with a vegetal layer. It is wet with a greyish-brown color. It has a natural and earthy odor free of technological impurity. | |
Moss The sampling location is in the tundra near the village of Aksarka (YNAO). Arctic moss leaves have a filamentous structure and grow in a spiral around the stem. The color of the plant varies from marshy to light green; the moss sample is saturated with moisture and has a plant odor. | |
Reindeer moss The sample was collected from the tundra located along the Salekhard–Aksarka road, 21 km from Aksarka village. They are lichens of the kind Cladonia or “deer moss“. Its small, branched bushes are similar to corals. The color of reindeer moss varies from brown to light gray. It is a dry plant; it has a mild plant odor. |
Modification | The G-Values for the Initial Concentration of Oil Products in the Model Solution | ||
---|---|---|---|
250 mg/L | 50 mg/L | 0.5 mg/L | |
Without modification | 38.68 | 18.56 | 14.7 |
Microwave irradiation | 40.56 | 19.31 | 15.05 |
Sorbent | The Maximum Sorption Capacities for the Initial Concentration of Oil Products in the Model Solution | |||||
---|---|---|---|---|---|---|
250 mg/L | 50 mg/L | 0.5 mg/L | ||||
Nature | MV | Nature | MV | Nature | MV | |
Peat | 379.53 | 408.1 | 22.21 | 23.03 | 0.44 | 0.46 |
Moss | 317.9 | 326.5 | 18.51 | 18.91 | 0.22 | 0.23 |
Reindeer moss | 293.7 | 338.0 | 18.51 | 21.07 | 0.21 | 0.24 |
Sorbent | C0/C, mg/L | Cm, mg/L | τ, s | β, s−1 | v, cm/s | Hk, cm |
---|---|---|---|---|---|---|
Without microwave treatment | ||||||
Peat | 10/0.05 | 3.51 | 10 | 0.1047 | 0.5 | 54.5 |
Moss | 10/0.05 | 3.68 | 11 | 0.0909 | 0.5 | 62.8 |
Reindeer moss | 10/0.05 | 4.01 | 13 | 0.0703 | 0.5 | 81.1 |
After microwave treatment | ||||||
Peat | 10/0.05 | 3.22 | 9 | 0.1259 | 0.5 | 45.3 |
Moss | 10/0.05 | 3.46 | 10 | 0.1061 | 0.5 | 53.7 |
Reindeer moss | 10/0.05 | 3.31 | 11 | 0.1005 | 0.5 | 56.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vialkova, E.; Fugaeva, A. Wastewater Treatment with the Natural Sorbents from the Arctic. Water 2022, 14, 4009. https://doi.org/10.3390/w14244009
Vialkova E, Fugaeva A. Wastewater Treatment with the Natural Sorbents from the Arctic. Water. 2022; 14(24):4009. https://doi.org/10.3390/w14244009
Chicago/Turabian StyleVialkova, Elena, and Anastasiia Fugaeva. 2022. "Wastewater Treatment with the Natural Sorbents from the Arctic" Water 14, no. 24: 4009. https://doi.org/10.3390/w14244009
APA StyleVialkova, E., & Fugaeva, A. (2022). Wastewater Treatment with the Natural Sorbents from the Arctic. Water, 14(24), 4009. https://doi.org/10.3390/w14244009